Электрофильное замещение в бензольном кольце. Типовая промышленная схема выделения стирола Некоторые свойства стирола

Технология совместного получения стирола и пропиленоксида

Общая технологическая схема совместного получения стирола и пропиленоксида представлена на рис. 3. В данной технологии окисление этилбензола проводится в тарельчатой колонне 1. При этом как подогретый этилбензол, так и воздух подаются в низ колонны. Колонна снабжена змеевиками, расположенными на тарелках. Тепло отводится водой, подаваемой в эти змеевики. Если для интенсификации процесса использовать катализатор, то процесс необходимо проводить в ряде последовательно соединенных барботажных реакторов, в которые подают противотоком к воздуху этилбензольную шихту (смесь свежего и возвратного этилбензола с катализаторным раствором). При этом продукты окисления проходят последовательно через реакторы, в каждый из которых подают воздух.

Парогазовая смесь из верхней части реактора поступает в конденсатор 2, в котором конденсируется главным образом унесённый этилбензол, а также примеси бензойной и муравьиной кислот. После отделения конденсата от тазов он направляется в скруббер 4 хя нейтрализации кислот щелочью. После нейтрализации этилбензол возвращается в реактор С 1. Туда же подается этилбензол из колонны 10. Газы выводятся из системы. Оксидат из нижней части колонны 1, содержащий около 10% гидропероксида, направляют в ректификационную колонну 3 для концентрирования. Концентрирование гидропероксида проводят при глубоком вакууме. Несмотря на большие затраты энергии, этот процесс лучше проводить на установке двойной ректификации. При этом на первой колонне отгоняется часть этилбензола при более низком вакууме, а во второй колонне при более глубоком вакууме отгоняется остальная часть этилбензола с примесями. Дистиллят этой колонны возвращается в первую колонну, а в кубе получается концентрированный (до 90 %) гидропероксид, который направляется на эпоксидирование. Предварительно оксидат охлаждается в теплообменнике 5 исходным этилбензолом.

Рис. 4. Технологическая схема совместного получения стирола и оксида пропилена; 1 - колонна окисления; 2 - конденсатор; 3,7-10,18 - ректификационные колонны; 4 - скруббер щелочной очистки; 5,12,14 - теплообменники; 6 - колонна эпоксидирования; 11 - испаритель смешения; 13,15 - реакторы дегидратации; 16 - холодильник; 17 - флорентийский сосуд; I - воздух; II - этилбензол; III -пропилен; IV - раствор щелочи; V - газы; VI - катализатор- ный раствор; VII -оксид пропилена; VIII - смолы; IX - водный слой; X - стирол; XI - на дегидрирование; XII -пар

В колонне 3 отгоняется этилбензол с примесями кислот, поэтому верхний продукт также направляется в скруббер 4. Из куба колонны 3 сконцентрированный гидропероксид поступает в колонну эпоксидирования 6. (Эпоксидирование можно также проводить в каскаде реакторов.) В нижнюю часть колонны подается катали - заторный раствор из куба колонны 9. Туда же проводится подпитка свежим катализатором. Свежий и возвратный (из колонны 7) пропилен также подается в нижнюю часть колонны. Продукты реакции вместе с катализаторным раствором выводят из верхней части колонны и направляют в ректификационную колонну 7 для отгонки пропилена. Газы выводят из верхней части колонны и из системы для утилизации или сжигания. Кубовый продукт колонны 7 поступает в ректификационную колонну 8 для выделения в качестве дистиллята продуктового оксида пропилена. Кубовая жидкость колонны # поступает в колонну 9 для отделения продуктов синтеза от катализаторного раствора.

Катализаторный раствор из куба колонны возвращается в колонну эпоксидирования 6, а верхний продукт поступает в ректификационную колонну Юлля отделения этилбензола от метилфенилкарбинола и ацетофенона. Смесь метилфенилкарбинола (МФК) и ацетофенона подается в испаритель 11, в котором с помощью перегретого пара испаряются и отделяются от смол метилфенилкарбинол и ацетофенон. Смесь паров, перегретая до 300 °С, поступает в реактор 13 для дегидратации метилфенилкарбинола. В этом реакторе частично проходит дегидратация. Так как реакция дегидратации является эндотермической, то прежде чем продукты дегидратации поступают в другой реактор (реактор 15), продукты дегидратации перегреваются в теплообменнике 14.

Конверсия метилфенилкарбинола после двух реакторов достигает 90%. Продукты дегидратации охлаждаются водой в холодильнике 76 и поступают во флорентийский сосуд 17, в котором органический слой отделяется от водного. Верхний углеводородный слой поступает в ректификационную колонну 18 для отделения стирола от ацетофенона. Ацетофенон затем гидрируется на отдельной установке в метилфенилкарбинол, который поступает в отделение дегидратации.

Селективность процесса по оксиду пропилена составляет 95-- 97 %, а выход стирола достигает 90 % по этилбензолу. При этом из 1 т пропиленоксида получается 2,6--2,7 т стирола.

Таким образом, рассмотренная технология представляет сложную систему, включающую множество рециклов по этилбензолу, пропилену и катализатору. Эти рециклы приводят, с одной стороны, к увеличению затрат энергии, а с другой, позволяют вести процесс в безопасных условиях (при низкой концентрации гидропероксида-- 10--13%) и достигать полной конверсии реагентов: этилбензола и пропилена.

Следовательно, данный процесс необходимо оптимизировать. В предложенной технологической схеме достаточно полно используется тепло реакций и потоков. Однако вместо холодильника 16 лучше использовать котел-утилизатор, в котором можно получать пар низкого давления. Для этого в котел-утилизатор необходимо подавать водный конденсат, из которого будет получаться пар. Кроме того, следует предусмотреть более полное использование отходящих газов и смолы, щелочного раствора солей из скруббера 4, а также до- очистку водного слоя флорентийского сосуда. Наиболее существенным усовершенствованием технологической схемы может служить замена реакторов дегидратации на колонну, в которой можно организовать совмещенный реакционно-ректификационный процесс. Этот процесс протекает на ионообменном катализаторе в парожидкостном варианте, т. е. при температуре кипения смесей, проходящих через колонну, и может быть представлен схемой (рис. 5).

Рис. 5.

В таком варианте процесса конверсия и селективность могут достигать 100 %, так как процесс протекает при низких температурах и малом времени пребывания продуктов синтеза в реакторе.Преимущество данного варианта процесса заключается еще и в том, что стирол не попадает в куб колонны, а выделяется в виде гете- роазеотропа с водой (температура кипения ниже 100 °С), что позволяет исключить его термополимеризацию.

Министерство общего образования РФ

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ

УНИВЕРСИТЕТ

НИЖНЕКАМСКИЙ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ

ИНСТИТУТ

Кафедра химической технологии

Группа

Курсовой проект

Тема: Получение этилбензола методом алкилирования бензола этиленом

Студентка:

Руководитель (_________)

Студент ка (_________)

г. Нижнекамск

ВВЕДЕНИЕ

Темой данного курсового проекта является получение этилбензола методом алкилирования бензола этиленом.

Наиболее распространенным процессом нефтехимического синтеза является каталитическое алкилирование бензола олефинами, что определяется высоким спросом на алкилароматические углеводороды – сырьё в производстве синтетических каучуков, пластических масс, синтетических волокон и др.

Алкилированием называют процессы введения алкильных групп в мо- лекулы органических и некоторых неорганических веществ. Эти реакции имеют большое практическое значение для синтеза алкилароматических соединений, изо-алканов, аминов, меркаптанов и сульфидов и др.

Реакция алкилирования бензола алкилхлоридами в присутствии безводного хлорида алюминия впервые была осуществлена в 1877 г. Ш. Фриделем и Дж. Крафтсом. В 1878 г. ученик Фриделя Бальсон получил этилбензол алкилированием бензола этиленом в присутствии ALCL3.

Со времени открытия реакции алкилирования было разработано много различных методов замещения водородных атомов бензола и других ароматических углеводородов на алкильные радикалы. Для этого применяли различные агенты алкилирования и катализаторы 48,49.

Скорость алкилирования ароматических углеводородов в несколько сот раз выше, чем парафинов, поэтому алкильная группа практически всегда направляется не в боковую цепь, а в ядро.

Для алкилирования ароматических углеводородов олефинами применяются многочисленные катализаторы, имеющие характер сильных кислот, в частности серная кислота (85-95%-ная), фосфорная и пирофосфорная кислоты, безводный фтористый водород, синтетические и природные

алюмосиликаты, иониты, гетерополикислоты. Кислоты в жидком виде проявляют каталитическую активность в реакциях алкилирования при невысоких температурах (5-100°С); кислоты на твердых носителях, например фосфорная кислота на кизельгуре, действуют при 200-300°С; алюмосиликаты активны при 300-400 и 500°С и давлении 20-40 кгс/см² (1,96-3,92 МН/м²).

Актуальность данной темы является, что в дальнейшем из этилбензола получают стирол, методом дегидрирования этилбензола.

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

2.1 Теоретические основы принятого метода производства.

Алкилирование бензола этиленом. Промышленные процессы алкилирования бензола этиленом различаются в зависимости от применяемого катализатора. Ряд катализаторов опробован в опытно-промышленном масштабе.

В 1943 г.фирмой «Copers» осуществлено алкилирование бензола этиленом на алюмосиликатном катализаторе в жидкой фазе при 310°С и 63 кгс/см² (6,17 МН/м²) при мольном отношении этилен: бензол 1:4.

Широкое распространение приобрёл процесс алкилирования бензола этиленом на хлористом алюминии при атмосферном или несколько повышенном давлении и температуре 80-100°С.

Конкурирует с этим методом алкилирование на твердом фосфорнокислотном катализаторе, однако на этом катализаторе может быть получен только изопропилбензол. Алкилирование же бензола этиленом практически на нём не проводится.

Большую группу катализаторов алкилирования составляют апротонные кислоты (кислоты Льюиса) – галогениды некоторых металлов. Они обычно проявляют каталитическую активность в присутствии промоторов, с которыми образуют продукты, имеющие характер сильных протонных кислот. Из катализаторов этого типа могут применяться хлористый алюминий, бромистый алюминий, трёххлористое железо, хлористый цинк, трёххлористый и четырёххлористый титан. Промышленное применение имеет только хлористый алюминий.

О механизме реакций алкилирования бензола и его гомологов олефинами придерживаются следующих общих представлений.

Алкилирование в присутствии хлористого алюминия трактуется по механиз-


му кислотного катализа. В этом случае в системе должен присутство-

вать промотор, роль которого играет хлористый водород. Последний может

образоваться в присутствии воды:

CH3 CH=CH2 + H – CL ∙ ALCL3 ↔ CH3 – CH – CH3 ∙ CL ∙ ALCL3

Дальнейшее присоединение к ароматическому ядру проходит по меха низму, аналогичному рассмотренному выше:

HCL(CH3)2 ∙CL∙ALCL3 +CH3 –CH–CH3 ∙CL∙ALCL3 →HCH(CH3)2 + CH(CH3)2 + CL ∙ ALCL3 + HCL + ALCL3

В присутствии хлористого алюминия легко протекает деалкилирование, что указывает на обратимость реакции алкилирования. Реакции деалкилирования пользуются для превращения полиалкилбензолов в моноалкил-

Термодинамика реакции алкилирования. На основе физико-химических

констант углеводородов и их термодинамических функций – энтальпии ΔН и

энтропии ΔS можно найти константы равновесия и рассчитать равновесные

выходы алкилпроизводных при алкилировании бензола олефинами в зависи-

мости от температуры и давления.

Равновесный выход этилбензола возрастает с увеличением мольного

избытка бензола и с повышением давления при данной температуре.

С6 H6 + C2 H4 ↔ C6 H5 C2 H5

При алкилировании бензола этиленом при температуре ниже 250-300°С

достигается практически полное превращение бензола в этилбензол. При 450

-500°С для увеличения глубины превращения требуется повышение давления до 10-20 кгс/см² (0,98-1,96 МН/м²).

Реакция алкилирования бензола этиленом является последовательной обратимой реакцией первого порядка. С углублением процесса наряду с моноалкилбензолом образуются также полиалкилбензолы

C6 H6 + Cn H2n ↔ C6 H5 Cn H2n+1

C6 H5 Cn H2n+1 + Cn H2n ↔ C6 H4 (Cn H2n+1)2 которые являются нежелательными побочными продуктами. Поэтому состав реакционной смеси алкилатов чаще определяется кинетическими факторами, чем термодинамическим равновесием.

Так, деалкилирование термодинамически возможно с большой глубиной при 50-100°С. И действительно, в присутствии хлористого алюминия оно проходит хорошо, так как с этим катализатором процесс алкилирования является обратимым. Однако при тех же температурах в присутствии кислот деалкилирование вовсе не происходит. М.А. Далиным экспериментально изучен состав продуктов алкилирования бензола этиленом в присутствии хлористого алюминия.

Состав реакционной смеси определяется соотношением бензола и этилена и не зависит от того, каким образом получен алкилат: прямым алкилированием или деалкилированием полиалкилбензола. Однако этот вывод справедлив только при применении в качестве катализатора хлористого алюминия.

Процесс алкилирования проводится в алкилаторе – реакционной колонне, эмалированной или футерованной графитовой плиткой для защиты от коррозии. Три секции колонны имеют рубашки для охлаждения, однако основное количество тепла отводится испарением некоторой части бензола. Алкилирование ведется в присутствии жидкого катализаторного комплекса, состоящего из хлористого алюминия (10-12%), бензола (50-60%) и полиалкилбензолов (25-30%). Для образования хлористого водорода, который является промотором реакции, в каталитический комплекс добавляют 2% воды от

массы хлористого алюминия, а также дихлорэтан или хлористый этил, при расщеплении которых образуется хлористый водород.

Для выделения этилбензола из алкилата отгоняют при атмосферном давлении бензол (одновременно с бензолом удаляются следы воды). От кубовой жидкости при пониженном давлении (200 мм рт.ст., 0,026 МН/м²) отгоняется широкая фракция – смесь этилбензола и полиалкилбензолов. В следующей колонне при остаточном давлении 50 мм рт.ст. (0,0065 МН/м²) полиалкилбензолы отделяются от смол. Широкую фракцию разгоняют в вакуумной колонне при остаточном давлении 420-450 мм рт.ст. (0,054-0,058 МН/м²). Товарный этилбензол перегоняется в пределах 135,5-136,2°С.

Для получения этилбензола используется этан – этиленовая фракция пиролиза, содержащая 60-70% этилена.

Бензол для алкилирования должен содержать не более 0,003-0,006% воды, в то время как товарный бензол содержит 0,06-0,08% воды. Обезвоживание бензола проводится методом азеотропной дистилляции. Содержание серы в бензоле не должно превышать 0,1%. Повышенное содержание серы вызывает увеличение расхода хлористого алюминия и ухудшает качество готовой продукции.


1.2. Характеристика сырья и получаемого продукта.

Наименование сырья, материалов,

реагентов,

катализаторов.

полуфабрикатов,

изготовляемой

продукции.

Номер государст-

венного или

отраслевого

стандарта,

технических

стандарта

предприятия.

Показатели качества, обязательные для проверки.

Норма (по

ОСТу, стан-

дарту предпри-

Назна-чение,

область применения.

1.ЭТИЛБЕНЗОЛ

бесцветная прозрачная жидкость. Основные показатели свойств этилбензола:

Молекулярная масса=106,17

Плотность, г/см³ = 0,86705 Температура,°С Кипения= 176,1

Плавления=-25,4 Вспышки= 20

Самовоспламенения= 431.

Теплота, кДж/моль

Плавления=9,95

Испарения=33,85 Теплоёмкость, Дж/моль ∙ К=106,4

Теплота сгорания, ккал/моль=1089,4

Растворимость в воде, г/100мл=0,014

В промышленности используют в основном как сырье для синтеза стирола, как добавка к моторному топливу, в качестве разбавителя и растворителя. С6 H5 C2 H5

Большую часть этилбензола получают алкилированием бензола этиленом и значительно меньшее его количество выделяют сверхчеткой ректификацией из продуктов риформинга прямогонного бензина. Основные показатели свойств этилбензола: Этилбензол раздражает кожу, оказывает

судорожное действие. ПДК в атмосферном воздухе составляет 0,02 мг/м³, в водоёмах хозяйственно-

бытового пользования – 0,01 мг/л. КПВ 0,9-3,9% по объёму. Объём мирового

производства около 17 млн. т в год (1987). Объём производства в России 0,8

млн. т в год (1990).

H2 C=CH2. Бесцветный газ со слабым запахом. Этилен растворяется в воде 0,256 см³/см³ (при 0 °С), растворяется в спиртах и эфирах.

Этилен обладает свойствами фитогормонов – замедляет рост, ускоряет старение клеток, созревание и опадение плодов. Он взрывоопасен, КПВ 3-34% (по объёму), ПДК в атмосферном воздухе 3 мг/м³, в воздухе рабочей зоны 100 мг/м³. Мировое производство 50 млн. т в год (1988).

В больших количествах (20%) содержится в газах нефтепереработки; входит в состав коксового газа. Один из основных продуктов нефтехимической промышленности: применяется для синтеза винилхлорида, этиленоксида, этилового спирта, полиэтилена и др. Этилен получается при переработке нефти и природного газа. Выде-

ленная этиленовая фракция содержит 90-95% этилена с примесью пропилена, метана, этана. Применяется как сырьё в производстве полиэтилена, окиси этилена, этилового спирта, этаноламина, поливинилхлорида, в хирургии – для наркоза.


C6 H6. Бесцветная жидкость со своеобразным нерезким запа

хом. С воздухом образует взрывоопасные смеси, хорошо смешивается с эфирами, бензином и другими органическими растворителями. Растворимость в воде 1,79 г/л (при 25 °С). Токсичен, опасен для окружающей среды, огнеопасен. Бензол – ароматический углеводород.

Основные показатели свойств бензола:

Молекулярная масса=78,12

Плотность, г/см³=0,879

Температура, °С:

Кипения=80,1

Плавления=5,4

Вспышки=-11

Самовоспламенения=562

Теплота, кДж/моль:

Плавления=9,95

Испарения=33,85

Теплоёмкость, Дж/моль ∙ К=81,6

Бензол смешивается во всех отношениях с неполярными растворителями: углеводородами, скипидаром, эфирами, растворяет жиры, каучук, смолы (гудрон). Даёт с водой азеотропную смесь с температурой кипения 69,25 °С, образует двойные и тройные азеотропные смеси со многими соединениями.

Встречается в составе некоторых

нефтей, моторных топлив, бензинов. Широко применяется в промышленности, является исходным сырьём для производства лекарств, различных пластмасс, синтетической резины, красителей. Бензол входит в состав сырой нефти, но в промышленных масштабах по большей части синтезируется из других её компонентов. Применяется также для получения этилбензола, фенола, нитробензола, хлорбензола, как растворитель.

В зависимости от технологии производства получают различные марки бензола. Бензол нефтяной получают в процессе каталитического риформинга бензиновых фракций, каталитического гидродеалкилирования толуола и ксилола, а также при пиролизе нефтяного сырья.


2.3. Описание технологической схемы.

В Приложении А представлена технологическая схема производства этилбензола. Процесс алкилирования бензола этиленом проводится в алкилаторе поз. Р-1 в среде этилхлорида при температуре 125-135C и давлении 0,26-0,4 МПа. В алкилатор подаются: осушенная бензольная шихта, каталитический комплекс, фракция полиалкилбензолов, этилен, рециркулирующий каталитический комплекс, возвратный бензол.

Реакция алкилирования идет с выделением теплоты, избыточное количество которой снимается рециркулирующим каталитическим комплексом и испаряющимся бен­золом. Бензол из верхней части алкилатора в смеси с абгазом на­правляется в конденсатор поз. Т-1, охла­ждаемый водой. Несконденсировавшиеся газы из конденсатора поз. Т-1 направляются в конденсатор поз. Т-2, охлаждаемый охлажденной водой t=0°C. Отдувки после конденсатора поз. Т-2 по­ступают на дальнейшее улавлива­ние паров бензола. Бензольный конденсат из конденсаторов поз. Т-1 и Т-2 самотеком сливается в низ алки­латора поз. Р-1. Из алкилатора поз. Р-1 реак­ционная масса через теплообмен­ник поз. Т-3, где охлаждается водой до 40-60 °С, направляется в отстой­ник поз. Е-1 для отделения от циркули­рующего каталитического комп­лекса. Отстоявшийся каталитиче­ский комплекс с низа отстойника поз. Е-1 забирается насосом поз. Н-1 и возвра­щается в алкилатор поз. Р-1. Для под­держания активности катализато­ра в линию рециркулирующего комплекса подается этилхлорид. В случае снижения активности катализатора предусмотрен вывод, отработанного каталитического комплекса на разложение. Реак­ционная масса из отстойника поз. Е-1 собирается в емкость поз. Е-2, откуда за счет давления в системе алкилирования поступает в смеситель поз. Е-3 на смешение с Кислой водой, циркулирующей в системе разложения:

отстойник поз. Е-4-насос, поз. Н-2-смеситель, поз. Е-3. Соотношение циркулирую­щей воды, подаваемой в смеситель, и реакционной массы состав­ляет l/2: 1. Вода в систему разложения подается из сборника поз. Е-5 насосом поз. Н-3. Реакционная масса отстаивается от воды в отстойнике поз. Е-4; нижний водный слой насосом поз. Н-2 направляется в смеситель; а верхний слой - реакционная масса - самотеком стекает в промыв­ную колонну поз. К-1 на вторичную промывку водой, подаваемой насосом поз. Н-4 из промывной колонны поз. К-2. Из промывной колонны поз. К-1 реакцион­ная масса самотеком поступает в сборник поз. Е-6, откуда насосом поз. Н-5 откачивается на нейтрализацию в смеситель поз. Е-7.

Нижний водный слой из промывной колонны поз. К-1 самотеком сли­вается в емкость поз. Е-5 и насосом поз. Н-3 подается в смеситель поз. Е-3. Нейтрали­зация реакционной массы в смесителе поз. Е-7 проводится 2-10%-ным раствором едкого натра. Соотношение реакционной массы и цирку­лирующего раствора едкого натра 1:1.Отделение реакционной массы от раствора щелочи происходит в отстойнике поз. Е-8, откуда ре­акционная масса самотеком поступает в колонну поз. К-2 на отмывку от щелочи водным конденсатом. Нижний слой - химически загряз­ненная вода - из колонны сливается в емкость поз. Е-9 и насосом поз. Н-4 откачивается на промывку реакционной массы в колонну поз. К-1. Реакционная масса из верхней части колонны самотеком поступает в от­стойник поз. Е-10, затем собирается в промежуточную емкость поз. Е-11 и отка­чивается насосом поз. Н-7 на склад.

Технологическая схема алкилирования бензола этиленом на хлористом алюминии, пригодная также и для алкилирования бензола пропиленом.

Процесс алкилирования проводится в алкилаторе – реакционной колонне эмалированной или футерованной графитовой плиткой для защиты от коррозии. Три секции колонны имеют рубашки для охлаждения, однако основное количество тепла отводится испарением некоторой части бензола. Алкилирование ведется в присутствии жидкого катализаторного комплекса, состоящего из хлористого алюминия (10 – 12 %), бензола (50 – 60 %) и

полиалкилбензолов (25 – 30 %). Для образования хлористого водорода, который является промотором реакции, в каталитический комплекс добавляют 2 % воды от массы хлористого алюминия, а также дихлорэтан или хлористый этил, при расщеплении которых образуется хлористый водород.


1.5. Описание устройств и принцип действия основного аппарата.

Алкилирование производится в реакторе колонного типа без механического перемешивания при давлении, близком к атмосферному (Приложение Б). Реактор состоит из четырёх царг, эмалированных или футерованных керамическими либо графитовыми плитками. Для лучшего контактирования внутри реактора имеется насадка. Высота реактора 12 м, диаметр 1,4 м. Каждая царга снабжена рубашкой для отвода тепла при нормальном режиме работы реактора (она же используется для разогрева при пуске реактора). Реактор доверху заполнен смесью бензола и катализатора. В нижнюю часть реактора непрерывно подают осушенный бензол, каталитический комплекс и газообразный этилен. Жидкие продукты реакции алкилирования непрерывно отбирают на высоте примерно 8 м от основания реактора, а сверху реактора отводится паро-газовая смесь, состоящая из непрореагировавших газов и паров бензола. Температура в нижней части реактора равна 100°С, в верхней – составляет 90 - 95°С. Катализаторный комплекс приготовляют в аппарате, откуда суспензия катализатора непрерывно подаётся в реактор алкилирования.

Алкилатор для получения этилбензола в жидкой фазе представляет со­бой стальную колонку, выложенную внутри кислотоупорной футеровкой поз. 4 или покрытую кислотоупорной эмалью для защиты стенок от корродирующего действия соляной кислоты. Аппарат имеет четыре царги поз.1, соеди­ненные фланцами поз. 2. Три царги снабжены рубашками поз. 3 для охла­ждения водой (для отвода тепла при реакции алкилирования). Реактор во время работы заполнен реакционной жидкостью, вы­сота столба которой составляет 10 м . Над уровнем жидкости иногда располагают два змеевика, в которых циркулирует вода, для дополнительного охлаждения.

Работа алкилатора непрерывна: в нижнюю часть его все время подаются бензол, этилен и каталитический комплекс; смесь реаги­рующих веществ и катализатора поднимается в верхнюю часть аппарата и отсюда перетекает в отстойник. Пары, выходящие из верхней части алкилатора (состоящие в основном из бензола), конденсируются и снова возвращаются в алкилатор в виде жид­кости.

За один проход этилен реагирует почти полностью, а бензол только на 50-55%; следовательно, выход этилбензола за один проход составляет около 50% от теоретического; остальной эти­лен теряется на образование ди- и полиэтилбензола.

Давление в алкилаторе во время работы составляет 0,5 ат (избыточное), температура 95-100°С.

Алкилирование бензола этиленом можно вести и в газовой фазе, над твердым катализатором, но этот метод еще мало при­меняется в промышленности.

Выход этилбензола составляет 90 – 95 % в расчёте на бензол и 93 % в расчёте на этилен. Расход на 1 т этилбензола составляет: этилена 0,297 т,

бензола 0,770 т, хлористого алюминия 12 – 15 кг.


2. ВЫВОДЫ ПО ПРОЕКТУ.

Наиболее дешёвый этилбензол получают выделением его из ксилольной фракции продуктов риформинга или пиролиза, где он содержится в количестве 10-15 %. Но основным способом получения этилбензола остаётся способ каталитического алкилирования бензола.

Несмотря на наличие многотоннажных производств алкилбензолов, существует ряд нерешённых проблем, снижающих эффективность и технико-экономические показатели процессов алкилирования. Можно отметить следующие недостатки:

Отсутствие стабильных, высокоактивных катализаторов алкилирования бензола олефинами; нашедшие же широкое применение катализаторы – хлорид алюминия, серная кислота и др.вызывают коррозию аппаратуры, не регенерируются;

Протекание вторичных реакций, снижающих селективность производства алкилбензолов, что требует дополнительных затрат на очистку получаемых продуктов;

Образование большого количества сточных вод и отходов производств при существующих технологических схемах алкилирования;

Недостаточные единичные мощности производства.

Таким образом, вследствие большой ценности этилбензола, в настоящее время спрос на него очень велик, при этом его себестоимость сравнительно невысока. Сырьевая база для получения этилбензола также широка: бензол и этилен в больших количествах получаются при крекинге и пиролизе нефтяных фракций.


3. СТАНДАРТИЗАЦИЯ

В курсовом проекте были применены следующие ГОСТы:

ГОСТ 2.105 – 95 Общие требования к текстовым документам.

ГОСТ 7.32 – 81 Общие требования и правила оформления курсовых и дипломных работ.

ГОСТ 2.109 – 73 Основные требования чертежа.

ГОСТ 2.104 – 68 Основные надписи на чертежах.

ГОСТ 2.108 – 68 Спецификации.

ГОСТ 2.701 – 84 Схемы, виды, типы, общие требования.

ГОСТ 2.702 – 75 Правила выполнения схем различных видов.

ГОСТ 2.721 – 74 Обозначения условные и графические в схемах.

ГОСТ 21.108 – 78 Условное и графическое изображение на чертежах.

ГОСТ 7.1 – 84 Правила оформления списка литературы.


4. СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ.

1. Травень В.Ф. Органическая химия: в 2 т: учеб.для вузов / В.Ф. Травень. – М.: НКЦ Академкнига, 2005. – 727 с.: ил. – Библиогр.: с. 704 – 708.

2. Эпштейн Д.А. Общая химическая технология: учеб.для ПТУ / Д.А. Эпштейн. – М.: Химия, - 1979. – 312 с.: ил.

3. Литвин О.Б. Основы технологии синтеза каучуков. / О.Б. Литвин. – М.: Химия, 1972. – 528 с.: ил.

4. Ахметов Н.С. Общая и неорганическая химия: учеб.для вузов – 4-е изд., испр. / Н.С. Ахметов. – М.: Высшая школа, изд. центр Академия, 2001. – 743 с.: ил.

5. Юкельсон И.И. Технология основного органического синтеза. / И.И. Юкельсон. – М.: Химия, -1968. – 820 с.: ил.

6. Паушкин Я.М., Адельсон С.В., Вишнякова Т.П. Технология нефтехимического синтеза: часть 1: Углеводородное сырьё и продукты его окисления. / Я.М. Паушкин, С.В. Адельсон, Т.П. Вишнякова. – М.: Химия, -1973. – 448 с.: ил.

7. Лебедев Н.Н. Химия и технология основного органического и нефтехимического синтеза: учеб.для вузов – 4-е изд., перераб. и доп. / Н.Н. Лебедев. – М.: Химия, -1988. – 592 с.: ил.

8. Платэ Н.А., Сливинский Е.В. Основы химии и технологии мономеров: учеб.пособие. / Н.А.Платэ, Е.В.Сливинский. – М.: МАИК Наука / Интерпериодика, -2002. – 696 с.: ил.


Введение…………………………………………………………………………3

2.Технологическая часть……………………………………………………….

2.1. Теоретические основы принятого метода производства………….5

2.2. Характеристика сырья и получаемого продукта…………………..9

2.3. Описание технологической схемы…………………………………12

2.4. Материальный расчёт производства……………………………….15

2.5. Описание устройства и принцип действия основного аппарата….20

3. Выводы по проекту………………………………………………………….22

4. Стандартизация………………………………………………………..........24

5. Список используемой литературы…………………………………………25

6. Спецификация………………………………………………………………26

7. Приложение А………………………………………………………………27

8. Приложение Б………………………………………………………………28

Использование: нефтехимия. Сущность: проводят алкилирование бензола этиленом путем подачи осушенной бензольной шихты, каталитического комплекса на основе хлорида алюминия, этилена, рециркулирующего каталитического комплекса и возвратного бензола в реактор алкилирования, отделение полученной реакционной массы от каталитического комплекса, нейтрализацию реакционной массы щелочью и отмывку водой от щелочи с последующим разделением реакционной массы ректификацией. При этом перед подачей в реактор алкилирования осуществляют смешение осушенной бензольной шихты, каталитического комплекса, этилена, рециркулирующего каталитического комплекса и возвратного бензола в турбулентном режиме и подают их в реактор алкилирования также в условиях турбулентности. Технический результат: повышение конверсии процесса получения этилбензола.

Изобретение относится к области нефтехимии, конкретно к процессу получения этилбензола алкилированием бензола этиленом в присутствии каталитического комплекса на основе хлорида алюминия.

Известен способ получения этилбензола, включающий алкилирование бензола этиленом в присутствии хлористого алюминия, отделение целевого продукта ректификацией от непрореагировавшего бензола и углеводородных примесей, азеотропную осушку смеси исходного бензола с непрореагировавшим бензолом и углеводородными примесями с выделением осушенного бензола, рециркулируемого на алкилирование, и фракции, содержащей воду, углеводородные примеси и бензол, которую подвергают конденсации с получением углеводородного и водного слоев (А.С. СССР №825466, МПК С 07 С 2/58, 15/02, опубл. 30.04.81).

Недостатком описанного способа является повышенный расход хлорида алюминия и бензола.

Известен способ получения этилбензола алкилированием бензола этиленом в присутствии каталитического комплекса на основе хлорида алюминия (Т.В.Башкатов, Я.Л.Жигалин. "Технология синтетических каучуков", М., "Химия", 1980, стр.108-112). Каталитический комплекс, полученный из хлорида алюминия, этилхлорида, диэтилбензола и бензола, непрерывно подают в нижнюю часть реактора алкилирования, куда непрерывно поступает осушенный свежий и возвратный бензол, а также этилен, диэтилбензол, насыщенный бензолом, и рециркулирующий каталитический комплекс. Жидкие продукты алкилирования бензола из верхней части реактора поступают в отстойник, где разделяются на два слоя. Нижний слой - каталитический комплекс - возвращается в реактор, верхний слой - алкилат - поступает на смешение с водой для разрушения остатков каталитического комплекса, на нейтрализацию водным раствором щелочи и отмывку от щелочи. Далее алкилат подвергается трехступенчатой ректификации с выделением в первой колонне непрореагировавшего бензола и возвращением его в реактор алкилирования, с выделением во второй колонне целевого продукта - этилбензола и в третьей колонне - диэтилбензола, возвращаемого в реактор на деалкилирование, и полиалкилбензолов, направляемых на склад.

Недостатком такого способа получения этилбензола является недостаточно высокая конверсия процесса - 90-95% по бензолу и около 93% по этилену.

Известен способ получения этилбензола, включающий алкилирование бензола этиленом в присутствии каталитического комплекса на основе хлорида алюминия и ректификацию реакционной массы (П.А.Кирпичников, В.В.Береснев, Л.М.Попова. "Альбом технологических схем основных производств промышленности синтетического каучука". Л., "Химия", 1986, стр.94-97). В нижнюю часть реактора алкилирования посредством коллектора подается осушенная бензольная шихта, свежий и рециркулирующий каталитический комплекс, фракция полиалкилбензолов и этилхлорид, этилен подается непосредственно в нижнюю часть реактора. Из алкилатора реакционная масса направляется в отстойник для отделения от циркулирующего каталитического комплекса и далее на водную промывку, нейтрализацию раствором щелочи и водную отмывку от щелочи. Отмытая реакционная масса подается на разделение ректификацией с выделением в первой колонне непрореагировавшего бензола, этилбензола-ректификата - во второй колонне и фракции полиалкилбензолов в третьей ректификационной колонне.

Недостатком способа является плохое смешение компонентов, подаваемых в реактор алкилирования, и, как следствие, невысокая конверсия процесса.

Задачей изобретения является повышение конверсии процесса получения этилбензола.

Поставленная задача решается разработкой способа получения этилбензола, включающем алкилирование бензола этиленом путем подачи осушенной бензольной шихты, каталитического комплекса на основе хлорида алюминия, этилена, рециркулирующего каталитического комплекса и возвратного бензола в реактор алкилирования, отделение полученной реакционной массы от каталитического комплекса, нейтрализацию реакционной массы щелочью и отмывку водой от щелочи с последующим разделением реакционной массы ректификацией, при этом перед подачей в реактор алкилирования осуществляют смешение осушенной бензольной шихты, каталитического комплекса, этилена, рециркулирующего каталитического комплекса и возвратного бензола в турбулентном режиме и подают их в реактор алкилирования также в условиях турбулентности.

Отличием предлагаемого способа от известных является то, что перед подачей в реактор алкилирования осушенную бензольную шихту, каталитический комплекс, этилен, рециркулирующий каталитический комплекс и возвратный бензол смешивают в условиях турбулентного режима и в реактор алкилирования их также подают в условиях турбулентности.

В качестве устройства, с помощью которого можно добиться турбулентного смешения потоков и придания им турбулентного движения, может быть использован, например, безобъемный смеситель, оснащенный конфузор-диффузорными секциями, или загруженные в трубу кольца Рашига, или любые другие известные средства, изготовленные из химически стойких материалов или с защитным химически стойким покрытием.

По предлагаемому способу этилбензол получают следующим образом.

Процесс алкилирования бензола этиленом проводится в реакторе алкилирования колонного типа при температуре 125-140°С и давлении верха 0,12-0,25 МПа. В нижнюю часть реактора алкилирования посредством турбулизирующего устройства непрерывно поступают осушенная бензольная шихта, каталитический комплекс на основе хлорида алюминия, этилен, рециркулирующий каталитический комплекс и возвратный бензол. Все компоненты перемешиваются в турбулентном режиме и поступают в реактор в условиях турбулентного движения потока. Из реактора алкилирования реакционная масса подается в отстойник для отстоя циркулирующего каталитического комплекса. Отстоявшийся рециркулируемый каталитический комплекс выводится снизу отстойника и возвращается в реактор алкилирования. Для поддержания активности каталитического комплекса в линию рециркулируемого каталитического комплекса подается хлористый этил. Далее реакционная масса поступает в смеситель, где смешивается с кислой водой в соотношении вода:реакционная масса не менее 1:1. Отстой реакционной массы от воды происходит в отстойнике, откуда верхний слой - реакционная масса - поступает в промывную колонну на промывку водой и далее на нейтрализацию 2-10%-ным раствором щелочи. Нейтрализованная реакционная масса поступает в колонну на отмывку водой от щелочи. Отмывка реакционной массы от щелочи может производиться водой или паровым конденсатом. Отмытая реакционная масса подается на разделение в первую ректификационную колонну, где дистиллятом выделяется непрореагировавший бензол, который подается на осушку. Кубовый продукт первой колонны поступает во вторую ректификационную колонну. Дистиллятом колонны выделяют целевой продукт - этилбензол, а кубовый продукт подается в третью ректификационную колонну, где в качестве дистиллята выделяют фракции диэтилбензола и полиалкилбензолов.

Осуществление способа иллюстрируют следующие примеры.

В нижнюю часть реактора алкилирования через безобъемный смеситель, снабженный диффузор-конфузорными секциями, непрерывно подают осушенную бензольную шихту, каталитический комплекс на основе хлорида алюминия, этилен, рециркулирующий каталитический комплекс и возвратный бензол. Все компоненты перемешиваются в турбулентном режиме и поступают в реактор в условиях турбулентного движения потока. Процесс алкилирования бензола этиленом проводится в реакторе алкилирования колонного типа при температуре 130°С и давлении верха 0,20 МПа. Из реактора алкилирования реакционная масса поступает в отстойник для отстоя циркулирующего каталитического комплекса. Отстоявшийся рециркулируемый каталитический комплекс выводится снизу отстойника и возвращается в реактор алкилирования. Далее реакционная масса поступает в смеситель, где смешивается с кислой водой в соотношении вода:реакционная масса не менее 1:1. Отстой реакционной массы от воды происходит в отстойнике, откуда верхний слой - реакционная масса - поступает в промывную колонну на промывку водой и далее на нейтрализацию 2-10%-ным раствором щелочи. Объемное соотношение раствора щелочи к реакционной массе выдерживают равным 1:1. Нейтрализованная реакционная масса поступает в колонну на отмывку водой от щелочи. Отмытая реакционная масса подается на разделение в первую ректификационную колонну, где дистиллятом выделяется непрореагировавший бензол, который подается на осушку. Кубовый продукт первой колонны поступает во вторую ректификационную колонну. Дистиллятом колонны выделяют целевой продукт - этилбензол, содержащий 99,8% мас. этилбензола, а кубовый продукт подается в третью ректификационную колонну, где в качестве дистиллята выделяют фракции диэтилбензола и полиалкилбензолов. Конверсия процесса по бензолу составляет 97%, по этилену - 95%.

Этилбензол получают так же, как описано в примере 1, но смешение осушенной бензольной шихты, каталитического комплекса, этилена, рециркулирующего каталитического комплекса и возвратного бензола перед подачей в ректор алкилирования осуществляют в трубе, заполненной кольцами Рашига.

Конверсия процесса по бензолу составляет 98%, по этилену - 95,5%.

Как видно из приведенных примеров, предварительное смешение осушенной бензольной шихты, каталитического комплекса, этилена, рециркулирующего каталитического комплекса и возвратного бензола в условиях турбулентного режима перед подачей в ректор алкилирования и подача всех компонентов на алкилирование в условиях турбулентности позволяют достичь высоких показателей конверсии при получении этилбензола.

Способ получения этилбензола, включающий алкилирование бензола этиленом путем подачи осушенной бензольной шихты, каталитического комплекса на основе хлорида алюминия, этилена, рециркулирующего каталитического комплекса и возвратного бензола в реактор алкилирования, отделение полученной реакционной массы от каталитического комплекса, нейтрализацию реакционной массы щелочью и отмывку водой от щелочи с последующим разделением реакционной массы ректификацией, отличающийся тем, что перед подачей в реактор алкилирования осуществляют смешение осушенной бензольной шихты, каталитического комплекса, этилена, рециркулирующего каталитического комплекса и возвратного бензола в турбулентном режиме и подают их в реактор алкилирования также в условиях турбулентности.

а)Галогенирование . Реакции электрофильного замещения проходят в присутствии катализаторов – хлоридов или бромидов алюминия или железа.

При галогенировании гомологов бензола обычно получается смесь изомеров, т.к. алкильные заместители – ориентанты I рода. В общем случае процесс показан на схеме:

б) Нитрование . Бензол и его гомологи достаточно легко образуют нитропроизводные, если используется не чистая азотная кислота, а так называемая нитрующая смесь - концентрированные HNO 3 и H 2 SO 4:

нитробензол

тринитротолуол

в)Алкилирование. Как уже упоминалось выше, алкилирование по Фриделю-Крафтсу является одним из основных лабораторных способов получения гомологов бензола:

В промышленности широко используется алкилирование алкенами. Роль катализатора в этом случае играет ион водорода Н + . Других продуктов, кроме гомологов бензола, не образуется. При алкилировании этеном (этиленом) получается этилбензол, а в случае пропена (пропилена) образуется изопропилбензол (кумол)

2 . Каталитическое гидрирование бензола и его гомологов происходит при повышенном давлении с использованием катализаторов (Ni, Pt). При этом бензол гидрируется до циклогексана, а, например, метилбензол (толуол) – до метилциклогексана.

C 6 H 5 CH 3 + 3H 2 C 6 H 11 CH 3

3. Радикальные реакции протекают при взаимодействии паров аренов в жестких условиях (УФ-излучение или температуры порядка 500 о С). Надо отметить, что бензол иего гомологи реагируют по разному.

В случае бензола реализуется радикальное присоединение

При радикальном хлорировании толуола будут последовательно замещаться атомы водорода по механизму радикального замещения .

4. Окисление . Окисление более характерно для гомологов бензола. Если гомолог имел только одну боковую цепь, то органическим продуктом окисления будет бензойная кислота. При этом длина и строение цепи значения не имеют. При окислении перманганатом калия в кислой среде гомологов, следующих за толуолом, кроме бензойной кислоты образуется угольная кислота.

Некоторые свойства стирола.

Как уже было сказано выше, стирол не относится к аренам, так как имеет двойную связь, и основным типом химических реакции для него будут реакции присоединения, окисления и полимеризации.

Так стирол легко реагирует с бромной водой, обесцвечивая ее, что является качественной реакцией на двойную связь:


По той же схеме происходит гидрирование стирола на никелевом катализаторе:

Окисление стирола осуществляется холодным водным раствором перманганата калия, продуктом окисления будет ароматический двухатомный спирт:

При окислении горячим раствором перманганата калия в присутствии серной кислоты будет образовываться бензойная кислота и углекислый газ.

Важной реакцией, имеющей большое практическое значение, является реакция полимеризации стирола:

Винильная группа представляет собой ориентант I рода, поэтому дальнейшее каталитическое замещение (например, галогеналканами) пойдет в орто- и пара- положения.

7.3.Примеры решения задач

Пример 21. Плотность по озону газовой смеси, состоящей из паров бензола и водорода, равна 0,2. После пропускания через контактный аппарат для синтеза циклогексана величина этой относительной плотности составила 0,25. Определить объемную долю паров циклогексана в конечной смеси и практический выход циклогексана.

Решение:

1)Найдем молярную массу исходной смеси:

М см = D(O 3)∙M (O 3) = 0.2∙ 48=9.6 г/моль.

2) Молярная масса конечной смеси равна 0,25 ∙ 48=12 г/моль.

3) Найдем молярное соотношение компонентов в исходной смеси

М см = φ∙М(бенз.) + М(водор.) ∙(1-φ), где φ-молярная (объемная) доля бензола

9,6 = 78φ + 2(1 –φ); 7,6 = 76φ; φ =0,1.

Значит, объемная доля водорода равна 0,9.

Следовательно, водород – в избытке, расчет ведем по бензолу.

4) Пусть количество исходной смеси равно 1 моль.

Тогда n(C 6 H 6) = 0.1 моль, n(H 2) = 0,9 моль,

а масса исходной смеси m см =1∙9,6= 9,6г.

Обозначим количество прореагировавшего бензола –z(моль) и

составим количественный баланс этой реакции.

С 6 Н 6 + 3Н 2 = С 6 Н 12

Было 0,1 0,9 0

Прореагировало z 3 z z

Запишем эти данные для удобства в виде таблицы:

5) Найдем общее количество веществ в конечной реакционной смеси:

n(кон) = 0,1 – z + 0,9 – 3z + z = 1 - 3 z .

Так как общая масса веществ в контактном аппарате не изменилась,

то n(кон)= m см / М (конечн) = 9,6/12 = 0,8моль.

6) Тогда 1 – 3z = 0,8; 3 z = 0,2; z= 0,067.

В таком случае объемная доля циклогексана равна 0,067/0,8 = 0, 084.

7) Теоретическое количество циклогексана составляет 0,1 моль; количество образовавшегося циклогексана 0,067 моль. Практический выход

η =0,067/0,1= 0,67 (67,0%).

Ответ: φ(циклогексана) = 0,084. η =0,067/0,1= 0,67 (67,0%).

Пример 22 . На нейтрализацию смеси ароматических кислот, полученных окислением смеси этилбензола и его изомеров, требуется объем раствора гидроксида натрия в пять раз меньший, чем минимальный объем такого же раствора, необходимого для поглощения всего углекислого газа, полученного при сжигании той же порции смеси изомеров. Определить массовую долю этилбензола в исходной смеси.

Решение:

1) Этилбензол - С 6 Н 5 С 2 Н 5. М = 106 г/моль; его изомерами являются диметилбензолы, имеющие одинаковую молекулярную формулу С 6 Н 4 (СН 3) 2 и ту же молярную массу, что и этилбензол.

Пусть количество этилбензола равно х(моль), а количество смеси диметилбензолов – y(моль).

2) Напишем уравнения реакций окисления этилбензола и его изомеров:

5C 6 H 5 C 2 H 5 + 12KMnO 4 + 18H 2 SO 4 5C 6 H 5 COOH + 5CO 2 +

5C 6 H 4 (CH 3) 2 + 12KMnO 4 + 18H 2 SO 4 5C 6 H 4 (COOH) 2 +

12MnSO 4 + 6K 2 SO 4 + 28H 2 O

Очевидно, что количества бензойной кислоты и смеси фталевых кислот тоже равны x и yсоответственно.

3) Уравнения нейтрализации полученных органических кислот:

С 6 Н 5 СООН + NaOH = С 6 Н 5 СООNa + H 2 O

С 6 Н 4 (СООН) 2 + 2NaOH = С 6 Н 4 (СООNa) 2 + 2 H 2 O

Из этих уравнений следует, что общее количество щелочи, пошедшее на

нейтрализацию смеси кислот n(общ) = x + 2 y

4) Рассмотрим уравнения сжигания углеводородов, учитывая, что все они

имеют молекулярную формулу С 8 Н 10 .

С 6 Н 5 С 2 Н 5 + 10,5 О 2 8 СО 2 + 5H 2 O

С 6 Н 4 (СН 3) 2 + 10,5 О 2 8 СО 2 + 5H 2 O

5) Из этих уравнений следует, что общее количество углекислого газа после сжигания исходной смеси аренов равно n(СО 2) = 8x + 8y

6) Так как требуется затратить минимальное количество щелочи, то нейтрализация протекает с образованием кислой соли:

NaOH + СО 2 = NaHCO 3

Таким образом, количество щелочи на нейтрализацию СО 2 тоже равно

8x + 8y. В таком случае 8x + 8y = 5(x + 2y); y =1,5x. x =2/3y 7) Расчет массовой доли этилбензола

ω(этилбензола) = m(этилбензола)/m(общ) = 106x/(106x +106y) =

1/ (1 +1,5) = 0,4 .

Ответ: ω (этилбензола) = 0,4 =40% .

Пример 23. Смесь толуола и стирола сожгли в избытке воздуха. При пропускании продуктов сгорания через избыток известковой воды образовалось 220 г осадка. Найдите массовые доли компонентов в исходной смеси, если известно, что она может присоединить

2,24 л HBr (н. у.).

Решение:

1) С бромоводородом реагирует только стирол в соотношении 1:1.

C 8 H 8 + HBr = C 8 H 9 Br

2) Количество вещества бромоводорода

n(HBr) = n (C 8 H 8) = 2,24/22,4 = 0,1моль.

3) Запишем уравнение реакции сгорания стирола:

C 8 H 8 + 10 О 2 8 СО 2 + 4H 2 O

В соответствии с уравнением реакции при сгорании 0,1моль стирола образуется 0,8 моль углекислого газа.

4) Углекислый газ реагирует с избытком гидроксида кальция тоже в

мольном соотношении 1:1 с образованием осадка карбоната кальция:

Ca(OH) 2 + СО 2 = CaCO 3

5) Общее количество карбоната кальция равно

n(CaCO 3) = m(CaCO 3)/ M(CaCO 3) = 220/100 = 2,2моль.

Значит, при сгорании углеводородов образовалось тоже 2,2моль СО 2 , из

которых 0,8моль дает при сгорании стирол.

Тогда на долю толуола приходится 2,2 - 0,8 = 1,4 моль СО 2 .

6) Уравнение сгорания толуола:

C 7 H 8 + 9 О 2 7СО 2 + 4H 2 O

Количество толуола в 7 раз меньше, чем количество углекислого газа:

n(толуол) = 1,4/7 = 0,2 моль.

7) Масса стирола m(стир.) = n(стир)∙M(стир) = 0,1∙104 =10,4(г);

масса толуола m(тол) = n(тол)∙M(тол) =0,2∙92 = 18,4(г).

8) Общая масса смеси углеводородов 10,4 + 18,4= 28,8(г).

массовая доля стирола: ω =10,4/ 28,8 = 0,361;

массовая доля толуола ω=0,639.

Ответ: ω(стирол) = 0,361 = 36,1%; ω(толуол)=0,639=63,9%.

7.4. Задачи и упражнения для самостоятельного решения

189 . Изобразите графические формулы всех изомеров аренов с общей формулой С 9 Н 12 .Назовите эти соединения.

190 . Получите а) из метана мета-нитротолуол, б) из этана стирол, в) из н-гептана бензиловый спирт, используя любые неорганические вещества и катализаторы

191. Идентифицируйте следующие соединения: а) бензол, стирол, толуол; б) гексен, циклогексан, толуол; в) этилбензол, стирол, фенол.

192. Осуществите цепочку превращений:

кокс HCl Cакт CH 3 Cl Cl 2.

а) CaCO 3 A B C D E

1000 o 500 o FeCl 3 УФ

NaOH C 2 H 4 Br 2 KOH KMnO 4

б) бензоат натрия A B C D E

сплавл. Н + УФ спирт H 2 O

t KMnO 4 C 2 H 5 Cl Cl 2 KOH

в) н-гептан A B C D E

Cr 2 O 3 Н + AlCl 3 УФ H 2 O

193 . Углеводород С 9 Н 12 прореагировал с бромом при нагревании. В результате было получено соединение состава С 9 Н 5 Br 7 . Напишите структурные формулы всех углеводородов, которые могли бы дать такой результат. Ответ обоснуйте.

194. Изобразите структурную формулу ближайшего гомолога стирола, имеющего цис- и транс-изомеры. Укажите типы гибридизации атомов углерода в этом соединении.

195. В каких из перечисленных веществ все атомы углерода имеют sp 2 – гибридизацию: толуол, бутадиен 1,3, циклогексан, этилбензол, стирол, бензол?

196. Из этанола получите этилбензол, не используя другие органические реагенты. Можно использовать любые неорганические вещества и катализаторы.

197. Приведите последовательность реакций, с помощью которых можно из кумола получить изофталевую кислоту (1,3 бензолдикарбоновую кислоту).

198. а)Сколько изомеров имеет арен, молекула которого содержит 58 протонов. Изобразите и назовите эти изомеры.

б)Имеет ли изомеры арен, в молекуле которого содержится 50 электронов? Ответ обоснуйте

199. При циклотримеризации ацетилена при 500 о С образовалась газовая смесь с плотностью по воздуху 2,24. Рассчитайте практический выход бензола.

200. В результате циклотримеризации ацетилена при 500 о С и давлении 1013 кПа, после охлаждения было получено 177,27мл жидкости с плотностью 0,88г/мл. Определите объем затраченного ацетилена при условиях синтеза, если практический выход составил 60%.

201 . При каталитической дегидроциклизации 80 г н-гептана выделилось

67,2 л водорода (н.у.). Рассчитайте практический выход полученного продукта.

202. Углеводород обесцвечивает бромную воду, при действии подкисленного раствора KMnO 4 образует бензойную кислоту с выделением диоксида углерода, При обработке избытком аммиачного раствора оксида серебра наблюдается выделение белого осадка. При комнатной температуре исходный углеводород – жидкий, а массовая доля водорода в нем - 6,9%. Определите углеводород.

203. Смесь бензола и циклогексена с молярной долей бензола 80% обесцвечивает 200 г 16%-го раствора брома в тетрахлорметане. Какая масса воды образуется при сгорании в кислороде той же массы смеси?

204. При реакции нитрования бензола избытком нитрующей смеси было получено 24,6г нитробензола. Какой объём бензола(плотность 0,88г/мл) вступил в реакцию?

205 . При нитровании одного из аренов массой 31,8 г образовалось только одно нитропроизводное массой 45,3 г. Определите формулу арена и продукта нитрования.

206 . Смесь бензола и циклогексана массой 5 г прореагировала с бромом (в темноте и без нагревания) в присутствии бромида железа (III). Объем выделившегося бромоводорода составил 1,12л (н. у.). Определите состав смеси в массовых долях.

207. Рассчитайте массу бромбензола, которая получится при взаимодействии 62,4г бензола с 51,61мл брома с плотностью 3,1г/мл в присутствии бромида железа(III), если выход составляет 90% от теоретического.

208 . При каталитическом бромировании 50 мл толуола (плотность 0,867 г/мл) с выходом 75% была получена смесь двух монобромпроизводных и газ, который пропустили через 70 г 40%-го раствора бутена-1 в бензоле.найдите массовые доли веществ в полученном растворе.

209. В результате бромирования 46 г толуола на свету была получена смесь моно- и дибромпроизводных. Объем выделившегося газа составил 17,92 л (н.у.) Какой объем 10%-го раствора карбоната натрия

(плотность 1,1г/мл) прореагировал с выделившимся газом, если в полученном растворе молярные концентрации кислой соли и бромоводорода равны.

210. Газ, выделившийся при получении бромбензола из 44,34мл бензола(плотность 0,88г/мл) прореагировал с 8,96л(н.у.) изобутилена. Выход бромбензола составлял 80% от теоретического, а реакция с изобутиленом прошла со 100% выходом. Какие соединения образовались при этом? Рассчитайте их массы.

211. Какой объём 10% раствора гидроксида натрия с плотностью 1,1г/мл потребуется для нейтрализации газа, выделившегося при получении бромбензола из 31,2г бензола?

212 . При сжигании 5,2г некоторого углеводорода в избытке кислорода образуется 8,96л углекислого газа (н.у.). Определите истинную формулу вещества, если относительная плотность его паров по гелию равна 26.

213 . Смесь стирола и этилциклогексана, способную прореагировать с 4,48л хлороводорода (н.у.) сожгли. При этом образовалось 134,4 г смеси воды и углекислого газа. Найдите объем кислорода, необходимый для сжигания этой же порции смеси.

214 . Масса смеси толуола и стирола в 29, 23 раза больше, чем масса водорода, необходимого для полного каталитического гидрирования исходной смеси. Найдите количественное соотношение компонентов смеси.

215 . Смесь бензола, толуола и этилбензола массой 13,45 г окислили перманганатом калия в кислотной среде. При этом образовалось 12.2 г бензойной кислоты и 1,12 л (н.у.) углекислого газа. Найдите массовые доли углеводородов в исходной смеси.

216. При сжигании 23,7 г смеси бензола и этилбензола объем затраченного кислорода оказался в 1,2917 раз больше суммарного объема углекислого газа. Определите массовые доли веществ в исходной смеси, а также массу осадка, который образуется при пропускании продуктов горения через избыток раствора известковой воды.

217. При окислении 26,5 г 1,4-диметилбензола горячим нейтральным раствором перманганата калия выпало 66,55 г осадка. Определите, какая часть исходного вещества окислилась.

218. Этилбензол, массой 42,4 г, обработали сначала избытком подкисленного раствора перманганата калия, а затем еще большим избытком раствора КОН. Затем воду выпарили, а сухой остаток прокалили. После конденсации паров получили 26,59 мл бесцветной жидкости с плотностью 0,88 г/мл. Определите практический выход продукта.

219. Смесь стирола и диметилциклогексана, способную обесцветить 320 г 5-ной% бромной воды сожгли на воздухе. При этом образовалось 67,2 г смеси воды и диоксида углерода. Рассчитайте объем воздуха, затраченного на сжигание, если объемная доля кислорода 20%.

220. В одном из аренов массовая доля нейтронов составляет 54,717%. Определите арен, изобразите и назовите его изомеры.

221. Определите истинную формулу углеводорода, если масса одной его молекулы составляет 17,276 . 10 -23 г, а массовая доля водорода равна 7,69%.

222. Относительная плотность паров углеводорода по неону равна 6. Известно, что углеводород не реагирует с бромной водой, окисляется подкисленным раствором перманганата калия до терефталевой(1,4-бензолдикарбоновой) кислоты, а число атомов углерода составляет 75% от числа атомов водорода. Определите углеводород.

223. Какая масса толуола потребуется для получения 113,5г тринитротолуола, если выход продукта составляет 82% от теоретического?

224. Какой объём бензола (плотность 0,88г/мл) можно получить из 33,6л(н.у.) ацетилена?

225. Для получения изопропилбензола взяли 70,0мл 2-бромпропана с плотностью 1,314г/мл и 39г бензола. Объём полученного изопропилбензола оказался равным 55,5мл(плотность 0,862г/мл). Вычислите выход изопропилбензола.

Глава 8. СПИРТЫ

Спирты- это гидроксипроизводные углеводородов, в которых группа –ОН непосредственно не связана с атомами углерода ароматического кольца.

По числу гидроксильных групп различаются спирты одноатомные и многоатомные

(двухатомные, трёхатомные и с большим числом гидроксильных групп). По характеру углеводородного радикала различают спирты насыщенные, ненасыщенные, циклические, ароматические. Спирты, у которых гидроксильная группа находится у первичного атома углерода, называются первичными, у вторичного атома углерода – вторичными, у третичного атома углерода – третичными.

Например:

бутанол-1 бутанол-2 2- метил-пропанол-2

(первичный) (вторичный) (третичный)

аллиловый спирт этиленгликоль глицерин

(ненасыщенный спирт) (двухатомный спирт) (трёхатомный спирт)

циклопентанол бензиловый спирт

(циклический спирт) (ароматический спирт)

8.1. Получение спиртов

1. Гидратация алкенов в кислой среде :

R 1 −CH=CH−R 2 + H 2 O(H +) R 1 −CH 2 −CH(OH) −R 2

Например:

CH 2 =CH 2 + H 2 O(H +) CH 3 – CH 2 (OH)

2. Гидролиз алкилгалогенидов в кислой или щелочной среде:

CH 3 −CH 2 −CH 2 −Br +NaOH(H 2 O) CH 3 −CH 2 −CH 2 −OH +NaBr

3. Гидролиз сложных эфиров:

а) в кислой среде

CH 3 COOC 2 H 5 + H 2 O(H +) = CH 3 COOH + C 2 H 5 OH

б) щелочной гидролиз(омыление)

CH 3 COOC 2 H 5 + NaOH(H 2 O) CH 3 COONa + C 2 H 5 OH

1-4 – ректификационные колонны; I – углеводородный конденсат; II -этилбензол на рециркуляцию в реакторную подсистему; III - бензол-толуольная фракция; IV - стирол; V - смолы.

В ректификационной колонне 1 отделяется основное количество этилбензола вместе с бензолом и толуолом.

В колонне 3 в качестве дистиллята отгоняется весь этилбензол и часть стирола. Эта фракция возвращается как питание в колонну 1. Таким образом, колонны 1-3 работают как трехколонный комплекс.

Окончательная очистка стирола от смол осуществляется в колонне 4 (часто для этого используют дистилляционный куб). Все колонны, в которых присутствует стирол, работают при глу­боком вакууме, чтобы температура в кубе не превышала 100 °С.

Рассмотрим некоторые особенности приведенной технологической схемы разделения. В такой схеме производства обычно используется вариант, в котором на первом этапе осуществляется второе заданное разделение. А именно, в первой колонне отгоняются вместе с этилбензолом бензол и толуол, а затем от этилбензола отгоняются легколетучие компоненты. С точки зрения затрат энергии этот вариант менее выгоден. Вместе с тем, учитывая реакционную способность стирола (высокая активность и способность к термополимеризации), этот вариант является более предпочтительным. Тем более, если принять во внимание небольшое содержание бензола и толуола в реакционной смеси.

Учитывая высокую реакционную способность стирола, для разделения пары «этилбензол-стирол» обычно используется «двойная ректификация», позволяющая снизить гидравлическое сопротивление ректификационных колонн, а следовательно, и температуру в кубах, которая должна быть не выше 100 °С (при необходимом вакууме). Именно при этой температуре начинается термополимеризация стирола.

В общем случае любая «двойная ректификация» является неприемлемой как в энергетическом отношении, так и по капитальным затратам. Использование такого варианта является вынужденной мерой. В данном случае возможны два варианта «двойной ректификации» (рис. 3.4, а , б ).


Технологическое оформление «двойной» ректификации:

а - вариант I; б - вариант II; 1-2 – ректификационные колонны; I – смесь этилбензола и стирола; II - стирол и полимеры; III - этилбензол.

В первом варианте в первой колонне наряду с полной отгонкой этилбензола (или легколетучего компонента для любой другой системы) отгоняется часть стирола. При этом со­отношение между этилбензолом и стиролом в дистилляте первой колонны выбирается таким, чтобы кубовая жидкость колонны 2 по своему составу примерно соответствовала составу исходной смеси колонны 1.

Во втором варианте в колонне 1 отгоняется чистый этилбензол. В кубе этой колонны остается такое количество этилбензола, которое позволяет при допустимом вакууме поддерживать темпе­ратуру не более 100 о С.

В колонне 2 в качестве дистиллята отгоняется оставшийся этилбензол вместе со стиролом, количество которого определяется соотношением этилбензола и стирола в ис­ходной смеси первой колонны.

В случае разделения этилбензола и стирола предпочтение может быть отдано первому варианту «двойной ректификации», в котором в колонне 2 подвергается нагреванию только часть стирола, тогда как во втором варианте весь стирол подвергается нагреванию в кубах обеих колонн, а это даже при вакууме приводит к его потерям за счет термополимеризации. Правда большая разница в энергозатратах может окупить потери стирола, но для этого требуется более детальное сравнение.

Для решения задачи разделения пары «этилбензол - стирол» может быть предложен вариант с одной колонной, заполненной насадкой с малым гидравлическим сопротивлением. В этом случае, учитывая большие потоки флегмы, будут разные количества потоков жидкости и пара по высоте колонны. Следовательно, для устойчивой работы насадочной колонны необходимы разные диаметры верхней и нижней частей колонны. Такая колонна позволяет разделить эту пару компонентов при температуре в кубе колонны не выше 100 °С.

Насадочная колонна с укрепляющей и исчерпывающей частями разного диаметра:

I – смесь этилбензола и стирола; II – стирол и полимеры; III – этилбензол.

Принципы в технологии получения стирола дегидрированием этилбензола .

· Технология производства стирола дегидрированием этилбензола относится к одностадийным химическим процессам.

· В качестве исходного сырья используется доступный этилбензол, получаемый алкилированием бензола олефинами.



· Применяемые в промышленности технологические решения с введением пара между двумя-тремя слоями катализатора, использование встроенных в реактор теплообменных устройств, а также

· эффективная каталитическая система позволяют при достаточно высокой селективности около 90% добиться конверсии этилбензола за один проход на уровне 60-75%.

· Рециркуляционный поток бензола, связывающий разделительную и реакторную подсистемы технологии, обеспечивают полную конверсию исходного сырья.

Снижение энергозатрат на процесс дегидрирования может достигаться не только за счет эффективного теплообмена между входящими и выходящими потоками, но и за счет использования вместо водяного пара (энергоноситель и разбавитель) инертного газа . В этом случае тепло должно подводиться между слоями катализатора с помощью встроенных теплообменников. Замена пара на инертный газ (азот, СО 2) позволяет избежать многократного испарения и конденсации воды, обладающей высокой скрытой теплотой испарения. В этом случае также снижаются и затраты на очистку водного конденсата, загрязненного ароматическими соединениями, и в целом уменьшится потребление воды производством.

Важной составной частью технологии выступает подсистема разделения . В данном случае, как отмечено ранее, существенным фактором, влияющим на суммарные показатели технологии, являются режимы ректификационного разделения. Они должны обеспечивать условия, при которых отсутствует термополимеризация стирола . Энергетически наиболее целесообразно применять вместо двойной ректификации одну насадочную колонну с низким гидравлическим сопротивлением, либо схему из комплексов гетероазеотропной ректификации.

Наконец, гетерогенно-каталитический характер процесса позволяет достаточно просто создавать аппараты и технологические линии большой единичной мощности.

Характеристика кубовых остатков ректификации стирола и пути их переработки .

Нефтехимические процессы являются наиболее сложными из химических производств, так как получение многих мономеров связано с образованием большого количества вторичных и побочных продуктов, отходов. Экономическая эффективность производства во многом зависит от способов утилизации отходов.

Для этого в настоящее время применяют в основном два метода - топливный и химический . Преимущество второго метода бесспорно, так как при этом рационально решается вопрос сырьевых ресурсов, поскольку многие отходы производства содержат ряд ценных мономеров и органических соединений. Сжигание, напротив, вызывает загрязнение атмосферы, коррозию аппаратуры, теряются в огромных количествах вторичные материальные ресурсы.

При выделении и очистке стирола в процессе ректификации накапливаются кубовые остатки, утилизация которых чрезвычайно важна. В состав их входит большое количество различных органических соединений, в том числе и мономерный стирол, полное извлечение которого на ректификационных колоннах не достигается.

В зависимости от условий фракционирования печного масла содержание стирола в кубовом остатке ректификации может изменяться от 10 до 50 %, а полистирола - 15-70 %.

Внедрение в последние годы высокоэффективных ингибиторов термической полимеризации стирола в процессе его получения позволило значительно снизить количество остаточного стирола и полистирола в КОРС. Это привело к тому, что синтез пленкообразующего стал мало перспективным и основным способом утилизации КОРС, стало использование его в качестве добавки к котельному топливу. Вопросом утилизации КОРС занимаются не один десяток лет, но до сих пор он остается актуальным.

Кубовые остатки ректификации стирола по составу можно условно представить тремя группами веществ

Мономеры,

Полимеры и

Продукты органического синтеза.

В результате исследований было идентифицировано около 95 % веществ, входящих в состав КОРС.

В зависимости от способов получения стирола, режима работы реактора, срока службы катализатора, режима работы колонн ректификации, применяемой ингибирующей системы и времени пребывания в отгонных аппаратах, состав КОРС меняется довольно в широких пределах.

К основным компонентам, входящим в состав КОРС, образующихся при производстве стирола дегидрированием этилбензола, относятся: стирол, метилстиролы, этилбензол, полистирол, дивинилбензол, нафталин, дифенил, неидентифицированные «легкие» вещества, высококипящий «тяжелый» остаток и др.

Исходя из компонентов состава КОРС можно предложить следующие пути его переработки:

1) разделение КОРС на фракции с их дальнейшим полным или частичным использованием.

2) выделение полимерной части из КОРС связано, в основном, с целью использования полимера стирола в качестве основы для получения пленкообразующих композиций.

Выделение полимера предлагалось двумя методами: отгонкой легколетучих компонентов и экстракцией. Необходимо отметить, что молекулярная масса полистирола в кубовых остатках изменяется в довольно широких пределах от 1000 до 110000, поэтому попытки выделения и использования полистирола представляют значительные трудности.

3) прямая утилизация КОРС с получением ценного продукта для дальнейшего его применения.

Прямая утилизация КОРС - на этом пути рассматриваются два направления:

Использование КОРС в качестве пластификатора и

Для получения пленкообразующих материалов.

Ряд работ направлен на использование КОРС в дорожном строительстве, как компонента асфальтобитумных покрытий, улучшающего адгезию к гравию и сцепление с грунтом. Однако, данное использование КОРС бесперспективно. Это в первую очередь связано с его токсичностью. Мономерный стирол присутствует в КОРС в значительно больших количествах, чем допустимо санитарными нормами. Поэтому большинство исследований имели целью утилизировать КОРС таким образом, чтобы уменьшить содержание мономерного стирола в полученном продукте с помощью полимеризации.

4) нейтрализация КОРС , как правило, сжигание в виде раствора - жидкое топливо.

Процесс нейтрализации КОРС определяется его токсичностью - в основном содержащимся в нем остаточным стиролом, а также присутствием очень токсичного и опасного для здоровья человека продукта канцерогена - 3,4-бенз(а)пирена (до 3000 мг/кг). Классический способ нейтрализации - сжигание КОРС в специальных печах затруднен тем, что содержание полимера в нем меняется. В результате образуется при сжигании большое количество сажи, содержащей до 120000 мкг/кг 3,4-бенз(а)пирена. При сжигании КОРС, содержащего в качестве ингибитора серу, образуется большое количество диоксида серы, также требующего улавливания или нейтрализации.

5) Более технологичным является сжигание КОРС в растворе толуола или другого растворителя, например, полиалкилбензольных смол. Этот способ используется большинством заводов, производителей стирола.

На ОАО «Ангарскнефтеоргсинтез» например, КОРС применялся как топливо при сжигании химически загрязненных вод в термических печах в смеси с каменноугольным топочным мазутом, на ОАО «Нижнекамскнефтехим» осуществлен запуск и освоение мощности установки утилизации жидких отходов.