Теорема об изменении момента количества движения материальной точки. Момент количества движения точки Определить момент количества движения материальной точки массой

Просмотр: эта статья прочитана 18006 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Теорема об изменении момента количества движения материальной точки

Момент количества движения

Момент количества движения точки М относительно центра О − это вектор, направленный перпендикулярно плоскости, проходящей через вектор количества движения и центр О в ту сторону, откуда поворот вектора количества движения относительно центра О виден против движения часовой стрелки.

Момент количества движения точки М относительно ос и равен произведению проекции вектора количества движения на плоскость перпендикулярную к оси на плечо этой проекции относительно точки О пересечения оси с плоскостью.

Теорема об изменении момента количества движения материальной точки относительно центра

Производная по времени от момента количества движения материальной точки относительно некоторого неподвижного центра равняется геометрической сумме моментов сил, действующих на точку, относительно того же центра.

Теорема об изменении момента количества движения материальной точки относительно оси

Производная по времени от момента количества движения материальной точки относительно некоторой неподвижной оси равняется алгебраической сумме моментов сил, действующих на точку, относительно этой же оси.

Законы сохранения момента количества движения материальной точки

  1. Если линия действия равнодействующей приложенных к материальной точке сил все время проходит через некоторый неподвижный центр, то момент количества движения материальной точки остается постоянным.
  2. Если момент равнодействующей приложенных к материальной точке сил относительно некоторой оси все время равняется нулю, то момент количества движения материальной точки относительно этой же оси остается постоянным.

Теорема об изменении главного момента количества движения системы

Кинетический момент

Кинетическим моментом или главным моментом количества движения механической системы относительно центра называют вектор, равный геометрической сумме моментов количества движения всех материальных точек системы относительно этого же центра.

Кинетическим моментом или главным моментом количества движения механической системы относительно оси называют алгебраическую сумму моментов количеств движения всех материальных точек относительно той же оси

Проекция кинетического момента механической системы относительно центра О на ось, проходящую через этот центр, равняется кинетическому моменту системы относительно этой оси.

Теорема об изменении главного момента количества движения системы (относительно центра) - теорема моментов

Производная по времени от кинетического момента механической системы относительно некоторого неподвижного центра геометрически равняется главному моменту внешних сил, действующих на эту систему, относительно того же центра

Теорема об изменении кинетического момента механической системы (относительно оси)

Производная по времени от кинетического момента механической системы относительно некоторой оси равняется главному моменту внешних сил относительно этой же оси.

Законы сохранения кинетического момента механической системы

  1. Если главный момент внешних сил относительно некоторого неподвижного центра все время равен нулю, то кинетический момент механической системы относительно этого центра величина постоянная.
  2. Если главный момент внешних сил относительно некоторой оси равен нулю, то кинетический момент механической системы относительно этой же оси величина постоянная.
  1. Теорема моментов имеет большое значение при изучении вращательного движения тел и разрешает не учитывать заведомо неизвестные внутренние силы.
  2. Внутренние силы не могут изменить главный момент количества движения системы.

Кинетический момент вращающейся системы

Для системы, которая вращается вокруг неподвижной оси (или оси, проходящей через центр масс), кинетический момент относительно оси вращения равен произведению момента инерции относительно этой оси и угловой скорости.

Формат: pdf

Язык: русский, украинский

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы



Определение скорости и ускорения точки по заданным уравнениям движения
Пример решение задачи на определение скорости и ускорения точки по заданным уравнениям движения


Определение скоростей и ускорений точек твердого тела при плоскопараллельном движении
Пример решения задачи на определение скоростей и ускорений точек твердого тела при плоскопараллельном движении


Определение усилий в стержнях плоской фермы
Пример решения задачи на определение усилий в стержнях плоской фермы методом Риттера и методом вырезания узлов

момент количества движения

МОМЕНТ КОЛИЧЕСТВА ДВИЖЕНИЯ (кинетический момент, момент импульса, угловой момент) мера механического движения тела или системы тел относительно какого-либо центра (точки) или оси. Для вычисления момента количества движения К материальной точки (тела) справедливы те же формулы, что и для вычисления момента силы, если заменить в них вектор силы на вектор количества движения mv, в частности K0 = . Сумма моментов количества движения всех точек системы относительно центра (оси) называется главным моментом количества движения системы (кинетическим моментом) относительно этого центра (оси). При вращательном движении твердого тела главный момент количества движения относительно оси вращения z тела выражается произведением момента инерции Iz на угловую скорость? тела, т.е. КZ = Iz?.

Момент количества движения

кинетический момент, одна из мер механического движения материальной точки или системы. Особенно важную роль М. к. д. играет при изучении вращательного движения. Как и для момента силы, различают М. к. д. относительно центра (точки) и относительно оси.

Для вычисления М. к. д. k материальной точки относительно центра О или оси z справедливы все формулы, приведённые для вычисления момента силы, если в них заменить вектор F вектором количества движения mv. Т. о., ko = , где r ≈ радиус-вектор движущейся точки, проведённый из центра О, a kz равняется проекции вектора ko на ось z, проходящую через точку О. Изменение М. к. д. точки происходит под действием момента mo(F) приложенной силы и определяется теоремой об изменении М. к. д., выражаемой уравнением dko/dt = mo(F). Когда mо(F) = 0, что, например, имеет место для центральных сил, движение точки подчиняется площадей закону. Этот результат важен для небесной механики, теории движения искусственных спутников Земли, космических летательных аппаратов и др.

Главный М. к. д. (или кинетический момент) механической системы относительно центра О или оси z равен соответственно геометрической или алгебраической сумме М. к. д. всех точек системы относительно того же центра или оси, т. е. Ko = Skoi, Kz = Skzi. Вектор Ko может быть определён его проекциями Kx, Ky, Kz на координатные оси. Для тела, вращающегося вокруг неподвижной оси z с угловой скоростью w, Kx = ≈ Ixzw, Ky = ≈Iyzw, Kz = Izw, где lz ≈ осевой, а Ixz, lyz ≈ центробежные моменты инерции. Если ось z является главной осью инерции для начала координат О, то Ko = Izw.

Изменение главного М. к. д. системы происходит под действием только внешних сил и зависит от их главного момента Moe. Эта зависимость определяется теоремой об изменении главного М. к. д. системы, выражаемой уравнением dKo/dt = Moe. Аналогичным уравнением связаны моменты Kz и Mze. Если Moe = 0 или Mze = 0, то соответственно Ko или Kz будут величинами постоянными, т. е. имеет место закон сохранения М. к. д. (см. Сохранения законы). Т. о., внутренние силы не могут изменить М. к. д. системы, но М. к. д. отдельных частей системы или угловые скорости под действием этих сил могут изменяться. Например, у вращающегося вокруг вертикальной оси z фигуриста (или балерины) величина Kz= Izw будет постоянной, т. к. практически Mze = 0. Но изменяя движением рук или ног значение момента инерции lz, он может изменять угловую скорость w. Др. примером выполнения закона сохранения М. к. д. служит появление реактивного момента у двигателя с вращающимся валом (ротором). Понятие о М. к. д. широко используется в динамике твёрдого тела, особенно в теории гироскопа.

Размерность М. к. д. ≈ L2MT-1, единицы измерения ≈ кг×м2/сек, г×см2/сек. М. к. д. обладают также электромагнитное, гравитационное и др. физические поля. Большинству элементарных частиц присущ собственный, внутренний М. к. д. ≈ спин . Большое значение М. к. д. имеет в квантовой механике.

Лит. см. при ст. Механика.

Момент количества движения материальной точки (кинетический момент) относительно выбранной точки пространства – это результат векторного произведения вектора, проведенного из выбранной точки в любую точку линии действия силы на вектор количества движения материальной точки:

Момент количества движения механической системы (кинетический момент системы) относительно выбранной точки пространства – это сумма моментов количества движения всех материальных точек системы относительно той же точки:

Ограничимся рассмотрением только плоских задач. В этом случае аналогично моменту силы можно считать, что момент количества движения точки является скалярной величиной и равен:

где v i – модуль вектора скорости точки;

h i –плечо.

Знак момента количества движения выбирается так же, как и знак момента силы.

Теорема: момент количества движения поступательно движущегося тела равен произведению массы тела на скорость любой точки тела и на плечо скорости центра масс относительно выбранной точки:

где h c – плечо скорости центра масс системы относительно выбранной точки.

Теорема: Момент количества движения вращающегося тела равен произведению момента инерции тела относительно оси вращения на угловую скорость:

где расстояние от рассматриваемой точки до оси вращения.

Теорема: момент количества движения тела движущегося плоскопараллельно равен сумме момента количества движения центра масс тела относительно выбранной точки и произведения собственного момента инерции тела на угловую скорость:

Элементарный импульс – это произведение момента силы на элементарный промежуток времени действия силы

1.3.11. Принцип возможных перемещений

Возможное перемещение – это любое бесконечно малое перемещение произвольной точки тела, которое допускают наложенные на тело связи без изменения самой связи.

Идеальная связь – это связь, у которой сумма возможных работ всех её реакций на всех возможных перемещениях системы равна нулю.

Все связи, которые рассматривались до этого, исключая шероховатую поверхность, являются идеальными.

Активная сила – любая сила, действующая в системе, исключая силы реакции. Из определения идеальных связей следует, что работа реактивных сил в случае системы с идеальными связями всегда равна нулю.

Число степеней свободы системы – это количество линейно независимых возможных обобщенных перемещений системы. Выбирать независимые перемещения можно произвольным образом. Так плоское тело, покоящееся на плоскости (рис. 1.52), имеет множество возможных перемещений (вправо, влево, вверх под углом), но линейно независимых

Только три (например, горизонтальное смещение , вертикальное смещение вверх dy и угол поворота вокруг точки А - dj ).

Принято обозначать возможные перемещения символом “δ ” перед перемещением. Следует отличать возможные перемещения от действительных. Возможных может быть множество, а действительных только одно. Действительное перемещение обязательно входит в число возможных.

Рассмотрим материальную точку M массой m , движущуюся под действием силы F (рисунок 3.1). Запишем и построим вектор момента количества движения (кинетического момента) M 0 материальной точки относительно центра O :

Рисунок 3.1

Дифференцируем выражение момента количества движения (кинетического момента k 0 ) по времени:

Так как dr/dt=V , то векторное произведение V × m∙V (коллинеарных векторов V и m∙V ) равно нулю. В то же время d(m∙V)/dt=F согласно теореме о количестве движения материальной точки . Поэтому получаем, что

dk 0 /dt = r×F , (3.3)

где r×F = M 0 (F) – вектор-момент силы F относительно неподвижного центра O . Вектор k 0 ⊥ плоскости (r, m×V ), а вектор M 0 (F) ⊥ плоскости (r, F ), окончательно имеем

dk 0 /dt = M 0 (F) . (3.4)

Уравнение (3.4) выражает теорему об изменении момента количества движения (кинетического момента) материальной точки относительно центра: производная по времени от момента количества движения (кинетического момента) материальной точки относительно какого-либо неподвижного центра равна моменту действующей на точку силы относительно того же центра.

Проецируя равенство (3.4) на оси декартовых координат, получаем

dk x /dt = M x (F) ;

dk y /dt = M y (F) ;

dk z /dt = M z (F) . (3.5)

Равенства (3.5) выражают теорему об изменении момента количества движения (кинетического момента) материальной точки относительно оси: производная по времени от момента количества движения (кинетического момента) материальной точки относительно какой-либо неподвижной оси равна моменту действующей на эту точку силы относительно той же оси.

Рассмотрим следствия, вытекающие из теорем (3.4) и (3.5).

Следствие 1

Рассмотрим случай, когда сила F во все время движения точки проходит через неподвижный центр O (случай центральной силы), т.е. когда M 0 (F) = 0 . Тогда из теоремы (3.4) следует, что k 0 = const , т.е. в случае центральной силы момент количества движения (кинетический момент) материальной точки относительно центра этой силы остается постоянным по модулю и направлению (рисунок 3.2).

Рисунок 3.2

Из условия k 0 = const следует, что траектория движущейся точки представляет собой плоскую кривую, плоскость которой проходит через центр этой силы.

Следствие 2

Пусть M z (F) = 0 , т.е. сила пересекает ось z или параллельна ей.

В этом случае, как это видно из третьего из уравнений (3.5), k z = const , т.е. если момент действующей на точку силы относительно какой-либо неподвижной оси всегда равен нулю, то момент количества движения (кинетический момент) точки относительно этой оси остается постоянным .

Билет 14

Вопрос 1

Под физическим маятником можно понимать любое тело, совершающее малые колебания относительно неподвижной горизонтальной оси под действием силы тяжести.

Как опытным путем определить положение центра тяжести тела сложной формы относительно оси (расстояние ОС), рассматривалось в разделе “Статика”. По измеренному периоду колебаний этого тела можно определить его момент инерции относительно оси Oz, проходящей через точку О,

и относительно горизонтальной оси, проходящей через центр масс тела.

Интересно знать ещё и следующее. У колеблющихся физических тел на продолжении линии, проходящей через ось вращения и центр тяжести тела, существует точка, которую называют центром качаний.

Если тело заставить колебаться относительно оси, проходящей через центр качаний, то период колебаний этого тела будет точно таким же, как и при колебаниях относительно оси, проходящей через точку О.

Находится центр качаний (т. D на рисунке) на продолжении линии ОС ниже центра тяжести тела на расстоянии, которое принято называть приведенной длиной физического маятника.

Дадим этому понятию следующее определение.

Под приведенной длиной физического маятника понимается длина математического

Маятника, период колебаний которого равен периоду колебаний физического маятника.

Приведенную длину маятника легко определить, приравняв выражения, из которых

определяются циклическая частота колебаний в каждом из случаев.

Вопрос 2

Кинетический момент точки и системы относительно центра и оси

Рассмотрим систему материальных точек с массами m 1 m 2 ....m n , имеющих в данный момент скорости v 1 v 2 .....v n относительно инерциальной системы отсчета. Выберем произвольный центр О (Рис.1). Кинетическим моментом точки m j относительно центра О называется вектор момента ее количества движения относительно этого центра.

K oj =m o (q j)=r j  m j v j (j=1,2...n) (1)

Известно, что векторное умножение можно записать через присоединенную матрицу первого сомножителя- радиуса вектора r.

Опуская индекс j, запишем матричное выражение в осях xyz c началом в О:

K o =mRv (2)

где R- кососимметричная присоединенная матрица столбца r

= m =m (3)

Проекция кинетического момента на ось называются кинетическим моментом точки относительно оси . Он вычисляется либо аналитически по формулам (3), либо как момент силы относительно оси. Момент дает только касательная составляющая вектора q (Рис.2).

K Z = + q t h (4)

Момент обращается в ноль, если вектор количества движения (скорость точки) лежит в одной плоскости с осью (параллелен или пересекает ось)

Кинетическим моментом системы относительно центра О называется главный момент количеств движений точек системы относительно этого центра.

K o =SK oj =S m j r j v j (5)

Аналогично с формулой (3) проекции вектора (4) образуют столбец кинетических моментов относительно осей координат

= Sm j (6)

Кинетическим моментом механической системы относительно полюса (оси) называют векторную (алгебраическую) сумму моментов количеств движения всех точек системы относительно этого же полюса О (той же оси)

() . (3.22)

Кинетический момент механической системы часто называют главным моментом количества движения системы соответственно относительно полюса или оси.

Если спроектировать кинетический момент из (3.22) на прямоугольные декартовы оси координат, то получим проекции кинетического момента на эти оси или кинетические моменты относительно осей координат

Если система материальных точек движется поступательно, то и, следовательно, .

Мы воспользовались свойством сочетательности векторного произведения относительно скалярного множителя и формулой для определения радиуса - вектора центра масс (2.4).

Таким образом, кинетический момент системы относительно полюса при поступательном движении равен моменту количества движения системы относительно этого полюса, при условии, что количество движения системы приложено в центре масс.

^ Кинетический момент твердого тела относительно оси вращения


Рис. 18

Пусть твердое тело вращается вокруг неподвижной оси с угловой скоростью (рис. 18). Выберем произвольную точку в твердом теле и вычислим кинетический момент этого тела относительно оси вращения. По определению кинетического момента системы относительно оси имеем

.
Но при вращении тела вокруг оси ,

причём количество движения точки - перпендикулярно отрезку и находится в плоскости, перпендикулярной оси вращения . Следовательно, момент количества движения относительно оси для точки

Для всего тела ,

то есть . (3.24)

Кинетический момент вращающегося тела относительно оси вращения равен произведению угловой скорости тела на его момент инерции относительно оси вращения.

Билет 15

Вопрос 1

Согласно принципу возможных перемещений (основному уравнению статики), для того, чтобы механическая система, на которую наложены идеальные, стационарные, удерживающие и голономные связи, находилась в равновесии, необходимо и достаточно, чтобы в этой системе были равны нулю все обобщенные силы:

где Q j - обобщенная сила, соответствующая j - ой обобщенной координате;

s - число обобщенных координат в механической системе.

Если для исследуемой системы были составлены дифференциальные уравнения движения в форме уравнений Лагранжа II - го рода, то для определения возможных положений равновесия достаточно приравнять обобщенные силы нулю и решить полученные уравнения относительно обобщенных координат.

Если механическая система находится в равновесии в потенциальном силовом поле, то из уравнений (1) получаем следующие условия равновесия:

Следовательно, в положении равновесия потенциальная энергия имеет экстремальное значение. Не всякое равновесие, определяемое вышеприведенными формулами, может быть реализовано практически. В зависимости от поведения системы при отклонении от положения равновесия говорят об устойчивости или неустойчивости данного положения.

Равновесие механической системы, состояние механической системы, находящейся под действием сил, при котором все её точки покоятся по отношению к рассматриваемой системе отсчёта. Если система отсчёта является инерциальной (см. Инерциальная система отсчёта),равновесие называется абсолютным, в противном случае - относительным. Изучение условий Р. м. с. - одна из основных задач статики. Условия Р. м. с. имеют вид равенств, связывающих действующие силы и параметры, определяющие положение системы; число этих условий равно числу степеней свободы системы. Условия относительности Р. м. с. составляются так же, как и условия абсолютного равновесия, если к действующим на точки силам прибавить соответствующие переносные силы инерции. Условия равновесия свободного твёрдого тела состоят в равенстве нулю сумм проекций на три координатные оси Oxyz и сумм моментов относительно этих осей всех приложенных к телу сил, т. е.

При выполнении условий (1) тело будет по отношению к данной системе отсчёта находиться в покое, если скорости всех его точек относительно этой системы в момент начала действия сил были равны нулю. В противном случае тело при выполнении условий (1) будет совершать т. н. движение по инерции, например двигаться поступательно, равномерно и прямолинейно. Если твёрдое тело не является свободным (см. Связи механические), то условия его равновесия дают те из равенств (1) (или их следствий), которые не содержат реакций наложенных связей; остальные равенства дают уравнения для определения неизвестных реакций. Например, для тела, имеющего неподвижную ось вращения Oz, условием равновесия будет åm z (F k ) = 0; остальные равенства (1) служат для определения реакций подшипников, закрепляющих ось. Если тело закреплено наложенными связями жестко, то все равенства (1) дают уравнения для определённой реакции связей. Такого рода задачи часто решаются в технике.

На основании отвердевания принципа равенства (1), не содержащие реакций внешних связей, дают одновременно необходимые (но недостаточные) условия равновесия любой механической системы и, в частности, деформируемого тела. Необходимые и достаточные условия равновесия любой механической системы могут быть найдены с помощью возможных перемещений принципа. Для системы, имеющей s степеней свободы, эти условия состоят в равенстве нулю соответствующих обобщённых сил:

Q 1 = 0, Q 2 = 0, ×××, Q s = 0. (2)

Из состояний равновесия, определяемых условиями (1) и (2), практически реализуются лишь те, которые являются устойчивыми (см. Устойчивость равновесия). Равновесия жидкостей и газов рассматриваются в гидростатике и аэростатике.

Вопрос 2

Билет 18

для уравновешенной системы сил уже в соответствии с принципом возможных перемещений сумма виртуальных работ сил на любом возможном перемещении системы должна быть равна нулю.

Сформулировать записанное можно следующим образом.

В любой момент движения механической системы с идеальными связями сумма виртуальных работ активных сил и сил инерции на любом возможном перемещении системы равна нулю.

Это равенство принято называть

общим уравнением динамики или принципом Лагранжа-Даламбера.

Вопрос 2

“принцип возможных перемещений”.

Этот принцип считается наиболее общим условием равновесия или равномерного движения любой механической системы. Из него можно получить все аналитические условия равновесия тела под действием системы сил, рассматриваемые в разделе “Статика”.

Формулируется принцип следующим образом:

Для равновесия механической системы с идеальными связями необходимо и достаточно,

чтобы сумма элементарных работ активных сил на любом возможном перемещении системы

была равна нулю.

Для доказательства необходимости этого условия равновесия любой находящейся в покое механической системы, разделим силы, действующие на любую точку системы, на заданные и силы реакции связей.

Билет 19

Вопрос 1

Приближенная теория гироскопа

Гироскопом называют тело, имеющее неподвижную точку и вращающееся вокруг оси материальной симметрии.

Предположим, что гироскоп вращается с угловой скоростью вокруг собственной оси симметрии. В этом случае кинетический момент

Это одна из важнейших характеристик при движении гироскопа.

В приближенной теории гироскопа принимают, что 1 << и кинетический момент гироскопа равен

Гироскоп с тремя степенями свободы

Гироскоп с тремя степенями свободы способен сопротивляться попытке изменения оси вращения гироскопа.

Рассмотрим гироскоп, у которого неподвижная точка совпадает с центром масс.

Рассмотрим сначала покоящийся гироскоп (= 0, L = 0). Если к гироскопу приложить силу , то очевидно, что гироскоп получит вращательное движение и упадет (т.е. ось гироскопа будет поворачиваться в плоскости чертежа).

Рассмотрим вращающийся (быстро) гироскоп. Прикладываем силу .

По теореме об изменении кинетического момента

Момент перпендикулярен к плоскости чертежа, тогда

Если к оси гироскопа прикладывается сила, то ось гироскопа смещается перпендикулярно действующей силе по направлению вращающего момента.

Если действие силы прекращается, то ось вращения гироскопа останавливается. ^ Говорят, что гироскоп способен противодействовать действию внешних сил.

Рассмотрим случай регулярной прецессии.

Имеется гироскоп, у которого центр масс не совпадает с неподвижной точкой.

На тело действует сила

Допустим OC = h , тогда

Отметим :

Под действием силы тяжести ось гироскопа будет вращаться вокруг вертикальной оси z . Такое явление называется регулярной прецессией.

Введем угловую скорость 1 – это угловая скорость, с которой ось гироскопа вращается вокруг оси z , ее еще называют “угловая скорость прецессии”.

Движение юлы – очень хороший пример движения гироскопа.

Гироскоп с тремя степенями свободы находит широкое применение в современных системах ориентирования (гирокомпас, гирогоризонт …).

ОБОБЩЁННЫЕ КООРДИНАТЫ

независимые параметры qi (i=1, 2, ..., s) любой размерности, число к-рых равно числу s степеней свободы механич. системы и к-рые однозначно определяют положение системы. Закон движения системы в О. к. даётся s ур-ниями вида qi=qi(t), где t - время. О. к. пользуются при решении мн. задач, особенно когда система подчинена связям, налагающим ограничения на её движение. При этом значительно уменьшается число ур-ний, описывающих движение системы, по сравнению, напр., с ур-ниями в декартовых координатах (см. ЛАГРАНЖА УРАВНЕНИЯ В МЕХАНИКЕ). В системах с бесконечно большим числом степеней свободы (сплошные среды, физ. поля) О. к. являются особые функции пространственных координат и времени, наз. потенциалами, волн. функциями и т. п.

В механике, степени свободы - это совокупность независимых координат перемещения и/или вращения, полностью определяющая положение системы или тела (а вместе с их производными по времени - соответствующими скоростями - полностью определяющая состояние механической системы или тела - то есть их положение и движение).

Число степеней свободы- это количество независимых перемещений, при котором состояние системы меняется!

Таким образом, обобщенной силой , соответствующей i-й обобщенной координате, называется величина, равная коэффициенту при вариации данной обобщенной координаты в выражении возможной работы сил, действующих на механическую систему.

В общем случае обобщенная сила является функцией обобщенных координат, скоростей точек системы и времени. Из определения следует, что обобщенная сила - скалярная величина, которая зависит от выбранных для данной механической системы обобщенных координат. Это значит, что при изменении набора обобщенных координат, определяющих положение данной системы, изменятся и обобщенные силы. Так, для диска радиусом r и массой m, который катится без скольжения по наклонной плоскости (рис. 18.8), за обобщенные координаты можно принять либо s - координата центра масс диска, либо "фи" - угол поворота диска.

4.1. Обобщенная сила системы с одной степенью свободы

Для системы с одной степенью свободы обобщенной силой, соответствующей обобщенной координате q , называют величину, определяемую формулой

где q – малое приращение обобщенной координаты; – сумма элементарных работ сил системы на ее возможном перемещении.

Билет 21

Вопрос 1

Уравнения двухстепенного гироскопа.

Уравнения двухстепенного гироскопа получаются автоматически из полученных ранее уравнений трехстепенного гироскопа.

определяет движение двухстепенного гироскопа. Второе уравнение описывает движение корпуса, на котором установлен двухстепенной гироскоп.

Если (момент инерции) тела велик, а гироскопический момент мал, то уравнение (2) может вообще не учитываться и пользоваться только (1).

Гироскопический момент:

θ - угол нутации

ω 1 - угловая скорость собственного вращения

ω 2 - скорость прецессии

J z - момент инерции

Нутация - слабое нерегулярное движение вращающегося твёрдого тела, совершающего прецессию.

Прецессия - явление, при котором ось вращающегося объекта поворачивается, например, под действием внешних моментов.

Наблюдать прецессию достаточно просто. Достаточно запустить волчок и подождать, пока он начнёт замедляться. Первоначально ось вращения волчка вертикальна. Затем его верхняя точка постепенно опускается и движется по расходящейся спирали. Это и есть прецессия оси волчка.

Правило Жуковского: Если гироскопу сообщают вынужденное прецессионное движение, то возникает гироскопическая пара сил, стремящаяся сделать ось гироскопа параллельной оси симметрии, причем так, чтобы направления вращения стали одинаковыми после их совпадения.

Вопрос 2

Если голономная механическая система описывается лагранжианом ( - обобщённые координаты, t - время, точкой обозначено дифференцирование по времени) и в системе действуют только потенциальные силы, то уравнения Лагранжа второго рода имеют вид

где i = 1, 2, … n (n - число степеней свободы механической системы). Лагранжиан представляет собой разность кинетической и потенциальной энергий системы.

Если в системе действуют непотенциальные силы (например, силы трения), уравнения Лагранжа второго рода имеют вид

где - кинетическая энергия системы, - обобщённая сила.

По сравнению с ур-ниями в декартовых координатах (см., напр., ур-ния Лагранжа 1-го рода) ур-ния (3) обладают тем важным преимуществом, что число их равно числу степеней свободы системы и не зависит от кол-ва входящих в систему материальных частиц или тел; кроме того, при идеальных связях из ур-ний (3) автоматически исключаются все наперёд неизвестные реакции связей. Л. у. 2-го рода, дающими весьма общий и притом достаточно простой метод решения задач, широко пользуются для изучения движения разл. механич. систем, в частности в динамике механизмов и машин, в теории гироскопа ,в теории колебаний и др.

Билет 22