Закон сохранения главного момента количеств движения системы. Закон сохранения количества движения. Теорема об изменении количества движения

Закон сохранения количества движения

1. Если сумма всех внешних сил, действующих на механическую систему, равна нулю, то вектор количества движения системы есть величина постоянная по модулю и направлению .

Если, то, следовательно.

2. Если сумма проекций всех действующих сил на какую-либо ось равна нулю, то проекция количества движения системы на эту ось есть величина постоянная .

Если, то, следовательно.


Лекция 11
ГЛАВНЫЙ МОМЕНТ КОЛИЧЕСТВ ДВИЖЕНИЯ (кинетический момент) системы
относительно центра и оси

Понятие о моменте количества движения точки.
Теорема об изменении момента количества движения точки.
Кинетический момент. Теорема об изменении кинетического
момента системы при ее движении по отношению к центру масс

Моментом количества движения точки относительно некоторого центра О называется векторная величина, определяемая равенством:

где – радиус-вектор движущейся точки. Вектор направлен перпендикулярно плоскости, проходящей через и центр О , а модуль равен,

где h – кратчайшее расстояние от центра до линии действия вектора скорости.

Момент количества движения (МКД) точки относительно какой-либо оси Оz , проходящей через центр О, равен проекции вектора на эту плоскость :

Продифференцируем обе части уравнения (1). Для правой части

Выражение как векторное произведение двух параллельных векторов. Учитывая, что – момент силы относительно центра 0 , получим:

Теорема об изменении момента количества движения точки. Производная по времени от момента количества движения точки, взятого относительно какого-нибудь неподвижного центра, равна моменту действующей на точку силы относительно того же центра .

Из равенства следует, что если, то.

Если момент действующих сил относительно некоторого центра равен нулю, то момент количества движения точки относительно этого центра есть величина постоянная .

Такое возможно в двух случаях: либо, либо плечо равно нулю, тогда эта сила будет называться центральной , т.е. линия ее действия проходит все время через данный центр О (например, сила притяжения планет к Солнцу, сила натяжения нити при кордовой модели).

Главным моментом количеств движения (или кинетическим моментом) системы относительно данного центра О называется векторная величина, равная геометрической сумме моментов количеств движения всех точек системы относительно этого центра:

Аналогично определяются моменты количеств движения (МКД) относительно координатных осей:

В предыдущей лекции отмечалось, что количество движения можно рассматривать как характеристику поступательного движения . Ниже покажем, что главный МКД системы может рассматриваться как характеристика вращательного движения .

Из теоремы об изменении количества движения системы можно получить следующие важные следствия.

1. Пусть сумма всех внешних сил, действующих на систему, равна нулю:

Тогда из уравнения (20) следует, что при этом Таким образом, если сумма всех внешних сил, действующих на систему, равна нулю, то вектор количества движения системы будет постоянен по модулю и направлению.

2. Пусть внешние силы, действующие на систему, таковы, что сумма их проекций на какую-нибудь ось (например, ) равна нулю:

Тогда из уравнений (20) следует, что при этом Таким образом, если сумма проекций всех действующих внешних сил на какую-нибудь ось равна нулю, то проекция количества движения системы на эту ось есть величина постоянная.

Эти результаты и выражают закон сохранения количества движения системы. Из них следует, что внутренние силы изменить количество движения системы не могут. Рассмотрим некоторые примеры.

Явление отдачи или отката. Если рассматривать винтовку и пулю как одну систему, то давление пороховых газов при выстреле будет силой внутренней. Эта сила не может изменить количество движения системы, равное до выстрела кулю. Но так как пороховые газы, действуя на пулю, сообщают ей некоторое количество движения, направленное вперед, то они одновременно должны сообщить винтовке такое же количество движения в обратном направлении. Это вызовет движение винтовки назад, т. е. так называемую отдачу. Аналогичное явление получается при стрельбе из орудия (откат).

Работа гребного винта (пропеллера). Винт сообщает некоторой массе воздуха (или воды) движение вдоль оси винта, отбрасывая эту массу назад. Если рассматривать отбрасываемую массу и самолет (или судно) как одну систему, то силы взаимодействия винта и среды, как внутренние, не могут изменить суммарное количество движения этой системы. Поэтому при отбрасывании массы воздуха (воды) назад самолет (или судно) получает соответствующую скорость движения вперед, такую, что общее количество движения рассматриваемой системы остается равным нулю, так как оно было нулем до начала движения.

Аналогичный эффект достигается действием весел или гребных колес

Реактивное движение. В реактивном снаряде (ракете) газообразные продукты горения топлива с большой скоростью выбрасываются из отверстия в хвостовой части ракеты (из сопла ракетного двигателя). Действующие при этом силы давления будут силами внутренними и не могут изменить количество движения системы ракета - продукты горения топлива. Но так как вырывающиеся газы имеют известное количество движения, направленное назад, то ракета получает при этом соответствующую скорость, направленную вперед. Величина этой скорости будет определена в § 114.

Обращаем внимание на то, что винтовой двигатель (предыдущий пример) сообщает объекту, например самолету, движение за счет отбрасывания назад частиц той среды, в которой он движется. В безвоздушном пространстве такое движение невозможно. Реактивный же двигатель сообщает движение за счет отброса назад масс, вырабатываемых в самом двигателе (продукты горения). Движение это в равной мере возможно и в воздухе, и в безвоздушном пространстве.

При решении задач применение теоремы позволяет исключить из рассмотрения все внутренние силы. Поэтому рассматриваемую систему надо стараться выбирать так, чтобы все (или часть) заранее неизвестных сил сделать внутренними.

Закон сохранения количества движения удобно применять в тех случаях, когда по изменению поступательной скорости одной части системы надо определить скорость другой части. В частности, этот закон широко используется в теории удара.

Задача 126. Пуля массой , летящая горизонтально со скоростью и, попадает в установленный на тележке ящик с песком (рис 289). С какой скоростью начнет двигаться тележка после удара, если масса тележки вместе с ящиком равна

Решение. Будем рассматривать пулю и тележку как одну систему Это позволит при решении задачи исключить силы, которые возникают при ударе пули о ящик. Сумма проекций приложенных к системе внешних сил на горизонтальную ось Ох равиа нулю. Следовательно, или где - количество движения системы до удара; - после удара.

Так как до удара тележка неподвижна, то .

После удара тележка и пуля движутся с общей скоростью, которую обозначим через v. Тогда .

Приравнивая правые части выражений , найдем

Задача 127. Определить скорость свободного отката орудия, если вес откатывающихся частей равен Р, вес снаряда , а скорость снаряда по отношению к каналу ствола равна в момент вылета .

Решение. Для исключения неизвестных сил давления пороховых газов рассмотрим снаряд и откатывающиеся части как одну систему.

Из теоремы об изменении количества движения системы можно получить следую­щие важные следствия:

1) Пусть сумма всех внешних сил, действующих на систему, равна нулю:

если сумма всех внешних сил, действующих на систему, равна нулю, то вектор количества движения системы будет постоянен по модулю и направлению.

2) Пусть внешние силы, действующие на систему, таковы, что сумма их проекций на какую-нибудь ось (например Оx ) равна нулю:

Тогда из уравнения следует, что при этом . Таким образом, если сумма проекций всех действующих внешних сил на какую-нибудь ось равна нулю, то проекция количества движения системы на эту ось есть величина постоянная.

Эти результаты и выражают закон сохранения количества движения системы. Из них следует, что внутренние силы изменить суммарное количество движения системы не могут. Рассмотрим неко­торые примеры:

а) Явление отдачи или отката. Если рассматривать винтовку и пулю как одну систему, то давление пороховых газов при выстреле будет силой внутренней. Эта сила не может изменить суммарное количество движения системы. Но так как пороховые газы, действуя на пулю, сообщают ей некоторое количество движения, направленное вперед, то они одновременно должны сообщить винтовке такое же количество движения в обратном направлении. Это вызовет движение винтовки назад, т.е. так называемую отдачу. Аналогичное явление получается при стрельбе из орудия (откат).

б) Работа гребного винта (пропеллера). Винт сообщает некоторой массе воздуха (или воды) движение вдоль оси винта, отбрасывая эту массу назад. Если рассматривать отбрасываемую массу и самолет (или судно) как одну систему, то силы взаимодействия винта и среды как внутренние не могут изменить суммарное коли­чество движения этой системы. Поэтому при отбрасывании массы воздуха (воды) назад самолет (или судно) получает соответствующую скорость движения вперед, такую, что общее количество движения рассматриваемой системы останется равным нулю, так как оно было нулем до начала движения.

Аналогичный эффект достигается действием весел или гребных колес.

в) Реактивное движение. В реактивном снаряде (ракете) газообразные продукты горения топлива с большой скоростью выбрасываются из отверстия в хвостовой части ракеты (из сопла реактивного двигателя). Действующие при этом силы давления бу­дут силами внутренними, и они не могут изменить суммарное коли­чество движения системы ракета - продукты горения топлива. Но так как вырывающиеся газы имеют известное количество движения, на­правленное назад, то ракета получает при этом соответствующую скорость движения вперед.

Принцип Даламбера.

Все методы решения задач динамики, которые мы до сих пор рассматривали, основываются на уравнениях, вытекающих или непосредственно из законов Ньютона, или же из общих теорем, являющихся следствиями этих законов. Однако, этот путь не является единственным. Оказывается, что уравнения движения или условия равновесия механической системы можно получить, положив в основу вместо законов Ньютона другие общие положения, называемые принципами механики. В ряде случаев применение этих принципов позволяет, как мы увидим, найти более эффективные методы решения соответствующих задач. В этой главе будет рассмотрен один из общих принципов механики, называемый принципом Даламбера.

Пусть мы имеем систему, состоящих из n материальных точек. Выделим какую-нибудь из точек системы с массой . Под действием приложенных к ней внешних и внутренних сил и (в которые входят и активные силы, и реакции связи) точка получает по отношению к инерционной системе отсчета некоторое ускорение .

Введем в рассмотрение величину

имеющую размерность силы. Векторную величину, равную по модулю произведению массы точки на ее ускорение и направленную противоположно этому ускорению, называют силой инерции точки(иногда даламберовой силой инерции).

Тогда оказывается, что движение точки обладает следующим общим свойством: если в каждый момент времени к фактически действующим на точку силам и прибавить силу инерции , то полученная система сил будет уравновешенной, т.е. будет

.

Это выражение выражает принцип Даламбера для одной материальной точки. Нетрудно убедиться, что оно эквивалентно второму закону Ньютона и наоборот. В самом деле, второй закон Ньютона для рассматриваемой точки дает . Перенося здесь член в правую часть равенства и придем к последнему соотношению.

Повторяя проделанные высшее рассуждения по отношению к каждой из точек системы, придем к следующему результату, выражающему принцип Даламбера для системы: если в любой момент времени к каждой из точек системы, кроме фактически действующих на ней внешних и внутренних сил, приложить соответствующие силы инерции, то полученная система сил будет находиться в равновесии и к ней можно будет применять все уравнения статики.

Значение принципа Даламбера состоит в том, что при непосредственном его применении к задачам динамики уравнения движения системы составляются в форме хорошо известных уравнений равновесия; что делает единообразный подход к решению задач и обычно намного упрощает соответствующие расчёты. Кроме того, в соединении с принципом возможных перемещений, который будет рассмотрен в следующей главе, принцип Даламбера позволяет получить новый общий метод решения задач динамики.

Применяя принцип Даламбера, следует иметь в виду, что на точку механической системы, движение которой изучается, действуют только внешние и внутренние силы и , возникающие в результате взаимодействия точек системы друг с другом и с телами, не входящими в систему; под действием этих сил точки системы и движутся с соответствующими ускорениями . Силы же инерции, о которых говорится в принципе Даламбера, на движущиеся точки не действуют (иначе, эти точки находились бы в покое или двигались без ускорений и тогда не было бы и самих сил инерции). Введение сил инерции - это лишь приём, позволяющий составлять уравнения динамики с помощью более простых методов статики.

Посмотрим теперь, что получается в случае большого количества частиц, т. е. когда тело состоит из множества частичек со множеством сил, действующих между ними и извне. Разумеется, мы уже знаем, что момент силы, действующий на любую i -ю частицу (т. е. произведение силы, . действующей на i -ю частицу, на ее плечо), равен скорости изменения момента количества движения этой частицы, а момент количества движения i -й частицы в свою очередь равен произведению импульса частицы на его плечо. Допустим теперь, что мы сложили моменты сил τ i всех частиц и назвали это полным моментом сил τ . Эта величина должна быть равна скорости изменения суммы моментов количества движения всех частиц L i . Эту сумму можно принять за определение новой величины, которую мы назовем полным моментом количества движения L . Точно так же, как импульс тела равен сумме импульсов составляющих его частиц, момент количества движения тела тоже равен сумме моментов составляющих его частиц. Таким образом, скорость изменения полного момента количества движения L равна полному моменту сил

С непривычки может показаться, что полный момент сил - ужасно сложная штука. Ведь нужно учитывать все внутренние и внешние силы. Однако если мы вспомним, что по закон Ньютона силы действия и противодействия не только равны, но и (что особенно важно!) действуют по одной и той же прямой в противоположных направлениях (неважно, говорил ли об этом сам Ньютон или нет, неявно он подразумевал это), то два момента внутренних сил между двумя взаимодействующими частицами должны быть равны друг другу и направлены противоположно, поскольку для любой оси плечи их будут одинаковы. Поэтому все внутренние моменты сил взаимно сокращаются и получается замечательная теорема: скорость изменения момента количества движения относительно любой оси равна моменту внешних сил относительно этой же оси!

Итак, мы получили в руки мощную теорему о движении большого коллектива частиц, которая позволяет нам изучать общие свойства движения, не зная деталей его внутреннего механизма. Эта теорема верна для любого набора частиц, независимо от того, образуют ли они твердое тело или нет.
Особенно важным частным случаем этой теоремы является закон сохранения момента количества движения, который гласит: если на систему частиц не действуют никакие внешние моменты сил, то ее момент количества движения остается постоянным.
Рассмотрим один очень важный частный случай набора частиц, когда они образуют твердое тело, т. е. объект, который всегда имеет определенную форму и геометрический размер, и может только крутиться вокруг какой-то оси. Любая часть такого объекта в любой момент времени расположена

одинаковым образом относительно других его частей. Попытаемся теперь найти полный момент количества движения твердого тела. Если масса i-й частицы его равна m i , а положение ее (x i , y i), то задача сводится к определению момента количества движения этой частицы, поскольку полный момент количества движения равен сумме моментов количества движения всех таких частиц, образующих тело. Для движущейся по окружности точки момент количества движения равен, конечно, произведению ее массы на скорость и на расстояние до оси вращения, а скорость в свою очередь равна угл овой скорости, умноженной на расстояние до оси:

Суммируя L i для всех частиц, получаем

Это выражение очень похоже на формулу для импульса, который равен произведению массы на скорость. Скорость при этом заменяется на угловую скорость, а масса, как видите, заменяется на некоторую новую величину, называемую моментом инерции I. Вот что играет роль массы при вращении! Уравнения (18.21) и (18.22) говорят нам, что инерция вращения тела зависит не только от масс составляющих его частичек, но и от того, насколько далеко расположены они от оси. Так что ёсли мы имеем два тела равной массы, но в одном из них массы расположены дальш е от оси, то его инерция вращения будет больше. Это легко продемонстрировать на устройстве, изображенном на фиг. 18.4. Масса М в этом устройстве не может падать слишком быстро, потому что она должна крутить тяжелый стержень. Расположим сначала массы m около оси вращения, причем грузик М будет как-то уско ряться. Однако после того, как мы изменим момент инерции, расположив массы m гораздо дальше от оси, мы увидим, что грузик М ускоряется гораздо медленнее, чем прежде. Происходит это вследствие возрастания инертности вращения, которая составляет физический смысл момента инерции- суммы произведений всех масс на квадраты их расстояний от оси вращения.
Между массой и моментом инерции имеется существенная разница, которая проявляется удивительным образом. Дело в том, что масса объекта обычно не изменяется, тогда как момент инерции легко изменить. Представьте себе, что вы встали на стол, который может вращаться без трения, и держите в вытянутых руках гантели, а сами медленно вращаетесь. Можно легко изменить момент инерции, согнув руки; при этом наша масса останется той же самой. Когда мы проделаем все это, то закон сохранения момента количества движения будет творить чудеса, произойдет нечто удивительное. Если моменты внешних сил равны нулю, то момент количества движения равен моменту инерции I 1 умноженному на угловую скорость ω 1 , т. е. ваш момент количества движения равен I 1 ω 1 . Согнув затем руки, вы тем самым уменьшили момент инерции до величины I 2 . Но поскольку из-за закона сохранения момента количества движения произведение I ω должно остаться тем же самым, то I 1 ω 1 должно быть равно I 2 ω 2 . Так что если вы уменьшили момент инерции, то ваша угловая скорость в результате этого должна возрасти.

1. Если главный вектор всех внешних сил системы равен нулю (), то количество движения системы постоянно по величине и направлению.

2. Если проекция главного вектора всех внешних сил системы на какую-либо ось равна нулю (
), то проекция количества движения системы на эту ось является постоянной величиной.

Теорема о движении центра масс.

Теорема Центр масс системы движется так же, как и материальная точка, масса которой равна массе всей системы, если на точку действуют все внешние силы, приложенные к рассматриваемой механической системе.


, следовательно

Момент количества движения системы.

Моментом количества движения системы материальных точекотносительно некоторого центраназывается векторная сумма моментов количества движения отдельных точек этой системы относительно того же центра

Моментом количества движения системы материальных точек
относительно какой-либо оси
, проходящей через центр, называется проекция вектора количества движения
на эту ось
.

Момент количества движения твердого тела относительно оси вращения при вращательном движении твердого тела.

Вычислим момент количества движения твердого тела относительно оси вращения.

Момент количества движения твердого тела относительно оси вращения при вращательном движении равен произведению угловой скорости тела на его момент инерции относительно оси вращения.

Теорема об изменении момента количества движения системы.

Теорема. Производная по времени от момента количества движения системы, взятого относительно какого-нибудь центра, равна векторной сумме моментов внешних сил, действующих на систему относительно того же центра.

(6.3)

Доказательство: Теорема об изменении момента количества движения для
точки имеет вид:

,

Сложим все уравнений и получим:


или
,

что и требовалось доказать.

Теорема. Производная по времени от момента количества движения системы, взятого относительно какой-либо оси, равна векторной сумме моментов внешних сил, действующих на систему относительно той же оси.

Для доказательства достаточно спроектировать векторное уравнение (6.3) на эту ось. Для оси
это будет выглядеть так:.

(6.4)

Теорема об изменении момента количества движения системы относительно центра масс. (без доказательства)

Для осей движущихся поступательно вместе с центром масс системы, теорема об изменении момента количества движения системы относительно центра масс сохраняет тот же вид, что и относительно неподвижного центра.

Модуль 2. Сопротивление материалов.

Тема 1 растяжение-сжатие, кручение, изгиб.

Деформации рассматриваемого тела (элементов конструкции) возникают от приложения внешней силы. При этом изменяются расстояния между частицами тела, что в свою очередь приводит к изменению сил взаимного притяжения между ними. Отсюда, как следствие, возникают внутренние усилия. При этом внутренние усилия определяются универсальным методом сечений (или метод разреза).

Известно, что различают силы внешние и силы внутренние. Внешние усилия (нагрузки) – это количественная мера взаимодействия двух различных тел. К ним относятся и реакции в связях. Внутренние усилия – это количественная мера взаимодействия двух частей одного тела, расположенных по разные стороны сечения и вызванные действием внешних усилий. Внутренние усилия возникают непосредственно в деформируемом теле.

На рис.1 приведена расчетная схема бруса с произвольной комбинацией внешней нагрузки образующую равновесную систему сил:

Сверху вниз: упругое тело, левая отсеченная часть, правая отсеченная частьРис.1. Метод сечений.

При этом, реакции связей определяются из известных уравнений равновесия статики твердого тела:

где х 0 , у 0 , z 0 - базовая система координат осей.

Мысленное разрезание бруса на две части произвольным сечением А (рис.1 a), приводит к условиям равновесия каждой из двух отсеченных частей (рис.1 б,в). Здесь {S’ } и {S" }- внутренние усилия, возникающих соответственно в левой и правой отсеченных частях вследствие действия внешних усилий.

При составлении мысленно отсеченных частей, условие равновесия тела обеспечивается соотношением:

Так как исходная система внешних сил (1) эквивалентна нулю, получаем:

{S ’ } = – {S ” } (3)

Это условие соответствует четвертой аксиоме статики о равенстве сил действия и противодействия.

Используя общую методологию теоремы Пуансо о приведении произвольной системы сил к заданному центру и выбрав за полюс приведения центр масс, сечения А " , точку С " , систему внутренних усилий для левой части {S } сводим к главному вектору и главному моментувнутренних усилий. Аналогично делается для правой отсеченной части, где положение центра масс сеченияА”; определяется, соответственно, точкой С " (рис.1 б,в).

Таким образом главный вектор и главный момент системы внутренних усилий, возникающие в левой, условно отсеченной части бруса, равны по величине и противоположны по направлению главному вектору и главному моменту системы внутренних усилий, возникающих в правой условно отсеченной части.

График (эпюра) распределения численных значений главного вектора и главного момента вдоль продольной оси бруса и предопределяют, прежде всего, конкретные вопросы прочности, жесткости и надежности конструкций.

Определим механизм формирования компонент внутренних усилий, которые характеризуют простые виды сопротивлений: растяжение-сжатие, сдвиг, кручение и изгиб.

В центрах масс исследуемых сечений С" или С " зададимся соответственно левой (с", х", у", z") или правой (с", х", у", z”) системами координатных осей (рис.1 б, в), которые в отличие от базовой системы координат x, у, z будем называть "следящими". Термин обусловлен их функциональным назначением. А именно: отслеживание изменения положения сечения А (рис.1 а) при условном смещении его вдоль продольной оси бруса, например при: 0 х’ 1 а, аx’ 2 b и т.д., где а и b - линейные размеры границ исследуемых участков бруса.

Зададимся положительными направлениями проекций главного вектора илии главного моментаилина координатные оси следящей системы (рис.1 б, в):

{N ’ , Q ’ y , Q ’ z } {M ’ x , M ’ y , M ’ z }

{N ” , Q ” y , Q ” z } {M ” x , M ” y , M ” z }

При этом положительные направления проекций главного вектора и главного момента внутренних усилий на оси следящей системы координат соответствуют правилам статики в теоретической механике: для силы - вдоль положительного направления оси, для момента - против вращения часовой стрелки при наблюдении со стороны конца оси. Они классифицируются следующим образом:

N x - нормальная сила, признак центрального растяжения или сжатия;

М x - внутренний крутящий момент, возникает при кручении;

Q z , Q у - поперечные или перерезывающие силы – признак сдвиговых деформаций,

М у , М z - внутренние изгибающие моменты, соответствуют изгибу.

Соединение левой и правой мысленно отсеченных частей бруса приводит к известному (3) принципу равенства по модулю и противоположной направленности всех одноименных компонент внутренних усилий, а условие равновесии бруса определяется в виде:

Как естественное следствие из соотношений 3,4,5 полученное условие является необходимым для того, чтобы одноименные компоненты внутренних усилий попарно образовали подсистемы сил эквивалентные нулю:

1. {N ’ , N ” } ~ 0 > N ’ = – N

2. {Q y , Q y } ~ 0 > Q y = – Q y

3. {Q z , Q z } ~ 0 > Q z = – Q z

4. {М x , M x } ~ 0 > М x = – M x

5. {M y , M y } ~ 0 > M y = – M y

6. {М z , M z } ~ 0 > М z = – M z

Общее число внутренних усилий (шесть) в статически определимых задачах совпадает с количеством уравнений равновесия для пространственной системы сил и связано с числом возможных взаимных перемещений одной условно отсеченной части тела по отношению к другой.

Искомые усилия определяются из соответствующих уравнений для любой из отсеченных частей в следящей системе координатных осей. Так, для любой отсеченной части соответствующие уравнения равновесия приобретают вид;

1. ix = N + P 1x + P 2x + … + P kx = 0 > N

2. iy = Q y + P 1y + P 2y + … + P ky = 0 > Q y

3. iz = Q + P 1z + P 2z + … + P kz = 0 > Q z

4. x (P i ) = M x + M x (P i ) + … + M x (P k ) = 0 > M x

5. y (P i ) = M y + M y (P i ) + … + M y (P k ) = 0 > M y

6. z (P i ) = M z + M z (P i ) + … + M z (P k ) = 0 > M z

Здесь для простоты обозначений системы координат с" х" у" z" и с" х" у" т" заменены единой оxуz .