Методы дозиметрии и спектрометрии ионизирующих излучений. Элементы дозиметрии ионизирующих излучений Дозиметрия ионизирующих излучений в медицине

Лекция 8

Тема: <<Методы дозиметрии и спектрометрии ионизирующих излучений>>

(краткая характеристика).

Вопросы:

Ионизационный метод регистрации ионизирующих излучений. Газовые счётчики. Полупроводниковые дозиметрические детекторы. Сцинтилляционный метод регистрации излучения. Калориметрический метод дозиметрии. Химическая дозиметрия. Фотографический метод регистрации излучений. Дозиметрия нейтронов. Дозиметрическая и радиометрическая аппаратура. Современное дозиметрическое оборудование для обеспечения лучевой терапии в Республике Беларусь.

1. Ионизационный метод регистрации ионизирующих излучений.

Этот метод основан на ионизирующем действии g-квантов и заряженных частиц. Для измерения во всех случаях используется ионизационная камера и регистрирующая система. Электрическое поле между двумя электродами ионизационной камеры, заполненной газом, создаётся от внешнего источника. Излучение вызывает возникновение ионов в газе камеры. Под действием электрического поля на хаотическое движение ионов накладывается движение дрейфа (собирание ионов на соответствующих электродах). В цепи возникает ток, который и регистрируется чувствительным прибором. Если разность потенциалов увеличивать при постоянной интенсивности излучения, то ток вначале увеличивается (рис. 24 (а)) пропорционально приложенной разности потенциалов, а затем его увеличение замедляется до тех пор, пока он не становится постоянным по величине. При очень больших разностях потенциалов ток снова возрастает, пока не наступит пробой (рис. 24 (в)).

На участке «б» скорость движения ионов возрастает (вероятность рекомбинации уменьшается до нуля и все ионы попадают на электроды). При этом ионизационный ток достигает постоянного значения (насыщения) – Iнас . Ионизационные камеры обычно работают в режиме тока насыщения, при котором каждый акт ионизации даёт составляющую тока. По току насыщения определяются интенсивность излучения и количество радиоактивного вещества.

Ионизацию разделяют на объёмную (равномерную по всему объёму, происходящую при нормальном давлении газа под действием b - и g-излучения) и колонную (возникающую при прохождении через газ a-частиц и протонов, а также при высоких давлениях в газе от g - и b-излучений).

В зависимости от назначения ионизационные камеры подразделяют на 2 основные группы:

1) импульсные, предназначенные для измерения числа частиц и их энергии путём регистрации импульсов тока, возникающих в камере при прохождении через неё заряженных частиц;

2) интегрирующие, предназначенные для измерения ионизационного тока, возникающего при прохождении через камеру потока частиц за некоторый интервал времени.

Из определения единицы экспозиционной дозы следует, что при мощности экспозиционной дозы в 1 р/с в 1 см­3 воздуха в 1 с образуется заряд, равный 3,33∙10-10 Кл. Следовательно, ток насыщения в зависимости от мощности экспозиционной дозы (P ) можно определить как

Iнас=3,33∙10-10 Pэксп∙ Vi (a);

где Vi – ионизационный объём воздуха камеры. Отсюда Pэксп=3∙109 (р/с) и Dэксп=3∙109 (Р).

2. Газовые счётчики.

Газовый счётчик представляет собой датчик (по конструкции аналогичный ионизационной камере), предназначенный для регистрации отдельных ядерных частиц. В отличие от ионизационных камер в газовых счётчиках для усиления ионизационного тока используется газовый разряд. Благодаря высокой чувствительности газовый счётчик реагирует на каждую частицу, возникшую внутри объёма газа, или проникшую в него из стенки счётчика. В зависимости от характера используемого газового разряда счётчики можно разделить на 2 типа:

1) пропорциональные счётчики (с несамостоятельным разрядом);

2) счётчики Гейгера (с самостоятельным разрядом).

При небольших разностях потенциалов счётчик работает в режиме ионизационной камеры (I), рис. 25, т. е. величина импульса в некотором интервале напряжений не зависит от U , а определяется только количеством ионов, которые образуются в газовом объёме счётчика ионизирующей частицей.

Амплитуда импульса строго пропорциональна начальной ионизации (от a-частиц величина импульса больше (ЛПЭ выше), чем от b-частиц), следовательно, пропорциональна и энергии, оставленной частицей в счётчике.

При дальнейшем увеличении U на электродах счётчика амплитуда импульса возрастает, т. к. при этом вторичные электроны в усиливающемся электрическом поле приобретают достаточную кинетическую энергию, чтобы произвести ударную ионизацию нейтральных молекул газа на пути своего свободного пробега. В свою очередь вновь образованные электроны ускоряются электрическим полем и ионизируют новые молекулы. При этом возникает лавинный разряд, который сразу прекращается, как только образованные электроны и ионы достигнут соответствующих электродов счётчика (несамостоятельный разряд).

Увеличение ионизационного тока с использованием несамостоятельного разряда называется газовым усилением, а отношение числа ионов, образовавшихся в результате газового усиления и достигших электродов, к первоначальному числу ионов, образованных ионизирующей частицей, называется коэффициентом газового усиления (k). Для области ионизационной камеры (I) k = 1.

Из сравнения амплитуд импульсов в пропорциональной области (II) при прохождении β- и α-частиц видно, что они пропорциональны начальной ионизации. Коэффициент пропорциональности изменяется от 1 в начале области II до 104 в конце её.

Счётчики, в которых амплитуда импульсов пропорциональна потерянной энергии частиц в газовом объёме, называют пропорциональными.

В области III (область Гейгера) величина амплитуды импульса тока совершенно не зависит от начальной ионизации. Все импульсы при заданном напряжении независимо от рода ионизирующих частиц имеют одинаковую амплитуду. Каждый вторичный электрон, возникший в объёме счётчика, вызывает вспышку самостоятельного разряда. Счётчики, с самостоятельным разрядом работающие в этой области, называют гейгеровскими.

3. Полупроводниковые дозиметрические детекторы.

Полупроводник в качестве счётчика падающих частиц выступает как аналог импульсной ионизационной камеры (ионизация атомов твёрдого вещества). Результатом ионизации в полупроводнике является появление свободных электронов в зоне проводимости (n-область) и дырок в валентной зоне (p-область).

Энергия образования пары «электрон­-дырка» порядка ширины запрещённой зоны (2 – 3 эВ). В газах на образование пары ионов затрачивается ~ 34 эВ. Т. о., в расчёте на одинаковую поглощённую энергию в полупроводниковом детекторе образуется ~ на порядок больше носителей электрических зарядов, чем в чувствительном объёме ионизационной камеры. Плотность полупроводникового детектора ~ в 103 раз больше плотности газа ионизационной камеры, поэтому и поглощённая энергия (в расчёте на одинаковую плотность потока излучения) в полупроводниковом детекторе на несколько порядков больше, чем в газовом (т. е. ионизационный эффект в полупроводниковом детекторе будет на несколько порядков выше). Это определяет его высокую чувствительность при малых размерах. У полупроводниковых детекторов по сравнению с газовыми – высокая подвижность носителей заряда (например, в кремнии при комнатной температуре подвижность электронов ~1300 см2/В ∙ с, а дырок ~ 500 см2/В ∙ с, тогда как подвижность ионов в воздухе ~ 1 см2/В ∙ с). Высокая подвижность определяет малое время собирания электрических зарядов на электроды и, как следствие, – большую временную разрешающую способность детектора в счётно-импульсном режиме работы. Малое время собирания снижает вероятность рекомбинации положительных и отрицательных зарядов, а большая подвижность носителей заряда определяет большой ионизационный ток. Последнее позволяет использовать на несколько порядков меньшие внешние напряжения, чем в газовом счётчике.

Использование полупроводниковых детекторов для внутриполостных измерений.

При решении отдельных задач радиационной медицины для дозиметрии внутри некоторых полостей в организме человека, применяют полупроводниковые детекторы (с (p-n)-переходом) без внешнего источника напряжения. Они миниатюрны и электрически безопасны. В отсутствие радиационного воздействия диффузионный потенциал обеспечивает равновесное состояние в области перехода. Заряды двойного слоя создают запорное электрическое поле. Возникшие при облучении дополнительные носители заряда перемещаются в этом полt (электроны – в n-область, а дырки – в p-область). При разомкнутой внешней цепи это приводит к снижению диффузионного потенциала, что может быть зарегистрировано. В режиме короткого замыкания возникающий в цепи ток пропорционален скорости образования электронно-дырочных пар, т. е. мощности дозы излучения в материале детектора (сопротивление внешней цепи должно быть меньше внутреннего сопротивления). Величина тока j (при U = 0) равнf , где a – коэффициент пропорциональности, связанный с единицами измерения , Pэксп – мощность экспозиционной дозы, Флуктуация" href="/text/category/fluktuatciya/" rel="bookmark">флуктуации энергии теплового движения. Это приводит к возникновению высокой фоновой проводимости полупроводника. В некоторых случаях высокий темновой ток не позволяет использовать полупроводники в качестве детекторов ионизирующего излучения. Неопределённость в величине чувствительного объёма затрудняет применение полупроводниковых дозиметров в качестве метрологических установок для измерений дозы. Ограничивает использование полупроводниковых детекторов для определения D и Dэксп и зависимость дозовой чувствительности от энергии излучения.

4. Сцинтилляционный метод дозиметрии.

Схема сцинтилляционного дозиметра состоит и сцинтиллятора, световода, фотоэлектронного умножителя (ФЭУ) и электронной регистрирующей системы. Излучение, взаимодействуя с веществом сцинтиллятора, вызывает образование в нём электронов, которые возбуждают атомы сцинтиллятора. Переход возбуждённых атомов в основное состояние сопровождается излучением фотонов. Свет через световод попадает на фотокатод ФЭУ. В ходе фотоэффекта из фотокатода выбиваются фотоэлектроны, которые размножаются на динодной системе ФЭУ, и усиленный таким образом электронный ток попадает на анод ФЭУ. Каждому электрону, поглощённому в сцинтилляторе, соответствует импульс тока в анодной цепи ФЭУ. Измерению может подлежать как среднее значение анодного тока (токовый режим), так и число импульсов тока в единицу времени (счётчиковый режим сцинтилляционного дозиметра). Ток в сцинтилляционном дозиметре соответствует поглощённой энергии излучения, а скорость счёта – плотности потока частиц.

Используются неорганические, например, NaI, и органические, например, стильбен , сцинтилляторы. По световыходу и постоянству конверсионной эффективности неорганические сцинтилляторы имеют преимущество перед органическими. Однако, в дозиметрии важную роль играет эффективный атомный номер вещества сцинтиллятора (Zэфф), и, с точки зрения тканеэквивалентности, преимущества остаются за органическими сцинтилляторами. Кроме этого у органических сцинтилляторов меньшее время высвечивания.

При работе в режиме счёта импульсов сцинтилляционный дозиметр примерно на порядок чувствительнее газоразрядного счётчика. В токовом режиме величина тока в анодной цепи ФЭУ равна

,

где g – число фотоэлектронов в расчёте на один испущенный фотон, M – коэффициент усиления ФЭУ (достигает 106), V – объём и h – толщина сцинтиллятора, νz и νв – линейные коэффициенты передачи энергии излучения в веществе сцинтиллятора и в воздухе, τz – линейный коэффициент ослабления падающего излучения в сцинтилляторе, Pэксп – мощность экспозиционной дозы, v-средний расход энергии.

Определив мощность экспозиционной дозы, рассчитывают экспозиционную дозу за некоторый интервал времени .

Сцинтилляционные детекторы излучений характеризуются высокой эффективностью регистрации проникающих излучений, малым временем высвечивания сцинтилляторов, обеспечивающим малое «мёртвое» время счётчиков, высокой временной и энергетической разрешающей способностью. Эти качества сцинтилляционных детекторов обуславливают их широкое использование для спектрометрии излучений (используется пропорциональность между амплитудой импульса и энергией частицы).

5. Калориметрический метод дозиметрии.

При сообщении термоизолированному телу теплоты (ΔQ) его температура (T) увеличится на некоторую величину D T

D Q= c∙ m∙ D T ,

где m – масса вещества калориметрического детектора, c – его удельная теплоёмкость.

При поглощении ионизирующего излучения вся энергия в конечном счёте превращается в тепло. Учитывая энергетический эквивалент рентгена, равный 8,8∙10-6 Дж на 1 г воздуха при нормальных условиях, получим для энергии D Ez , поглощённой за время t

,

где S – сечение и h – высота цилиндрического калориметрического детектора, масса которого равна m= r z∙ S∙ h ; r z – плотность вещества детектора, t z – линейный коэффициент ослабления излучения в веществе детектора, n z – линейный коэффициент передачи энергии излучения веществу калориметрического детектора, n – массовый коэффициент передачи энергии излучения в воздухе, n mв= nв / r .

Из этого выражения, учитывая, что https://pandia.ru/text/78/163/images/image012_19.gif" width="81" height="24 src=">, получаем соотношение между D T и Dэксп

,

в котором n mz= n z / r z .

Малые изменения D T и другие экспериментальные трудности ограничивают применение этого метода. Но он является прямым, абсолютным методом дозиметрии, т. к. основан на непосредственном измерении поглощённой энергии в отличие от других методов, в которых измеряется косвенный эффект действия радиации (ионизация и т. п.). Этот метод используют для калибровки других дозиметров в области больших доз излучения. Данный метод используется также для дозиметрии излучений радиоактивных веществ. Количество теплоты, соответствующее полному поглощению энергии излучения радиоактивного препарата, пропорционально его активности (A )

где E a , E b , E g – энергии a-, b - и g-излучений соответственно, h a , h b , h g – доли энергии, поглощённой в калориметрическом детекторе от этих видов излучения (если оно представляет их смесь).

Недостатком метода является его относительно невысокая чувствительность.

6. Химическая дозиметрия.

Некоторые недостатки ионизационных и калориметрических методов дозиметрии (трудности в поддержании режима тока насыщения и ухудшение свойств изоляции электродов при измерении больших мощностей доз или недостаточная чувствительность при определении дозиметрических характеристик низкоинтенсивных излучений) привели к необходимости разработки химических методов дозиметрии, использующих иные принципы.

Химический метод дозиметрии основан на регистрации необратимых химических изменений, производимых излучением в веществе. Продукты химических реакций определяются либо непосредственно (по изменению цвета и т. п.), либо косвенно с помощью способов химического анализа (титрование, спектрофотометрия и др.). одним из таких химических методов является ферросульфатный метод дозиметрии. Анализируемый раствор содержит сульфат железа в разбавленной серной кислоте, насыщенной кислородом..gif" width="29" height="21 src=">.gif" width="33" height="21 src=">, образованных в анализируемом растворе под действием радиации, пропорционально экспозиционной дозе (мощности экспозиционной дозы)..gif" width="220" height="41">,

где e – молярный коэффициент экстинкции, характеризующий ослабление света за счёт поглощения и рассеяния, G – радиационно-химический выход реакции (количество продуктов реакции, возникших при поглощении в реагирующей среде энергии, равной 100 эВ), l – толщина слоя раствора, через который проходит ультрафиолетовое излучение в спектрофотометре (длина волны, соответствующая максимуму в спектре поглощения раствора, содержащего ионы https://pandia.ru/text/78/163/images/image018_12.gif" width="33" height="21"> влияют концентрация кислорода, присутствие органических примесей (уменьшается G при уменьшении концентрации кислорода и наличии органики).

Недостатком метода является самопроизвольное изменение параметров раствора и без облучения при хранении, вследствие чего он должен быть приготовлен непосредственно перед измерением.

7. Фотографический метод дозиметрии.

С помощью фотографического метода были получены первые сведения об ионизирующем действии излучений радиоактивных веществ. В настоящее время он используется для индивидуального контроля дозы ионизирующего излучения.

В состав светочувствительной эмульсии входит бромистое серебро (или иная соль серебра), находящаяся внутри слоя желатина. При облучении светочувствительного слоя фотонами (или иными видами излучения), воздействие будут оказывать электроны, образованные в пространстве, окружающем фотоэмульсию. Электроны взаимодействуют с AgBr, нейтрализуя положительный ион серебра и образуя тем самым на поверхности зёрен центры проявления – атомы металлического серебра. В дальнейшем под действием проявителя эти центры способствуют восстановлению металлического серебра из зёрен AgBr вокруг себя. При фиксировании происходят растворение и удаление из эмульсии кристаллов AgBr, не содержащих центров проявления.

Фотоэмульсии различной чувствительности используются для дозиметрии в широком диапазоне доз. Фотоплёнки помещают в специальные кассеты вместе с фильтром, предназначенным для улучшения энергетической характеристики и для дискриминации отдельных видов излучения.

Химически обработанная плёнка имеет прозрачные и почерневшие места, которые соответствуют незасвеченным и засвеченным участкам фотоэмульсии. Используя этот эффект для дозиметрии, можно устанавливать связь между степенью почернения плёнки и поглощённой дозой, которую определяют по оптическому пропусканию с помощью денситометра.

Недостатком метода является невысокая чувствительность к малым дозам излучения и зависимость результатов измерений от условий обработки плёнки.

8. Дозиметрия нейтронов.

Для регистрации нейтронов используют различные виды вторичных излучений, возникающих в результате ядерных реакций или рассеяния электронов на ядрах атомов вещества, используемого для дозиметрии. При этом энергия электронов в поглощающей среде преобразуется в энергию протонов и ядер отдачи, α-частиц, γ-квантов и продуктов деления.

Для дозиметрии тепловых нейтронов используют реакцию захвата (n, γ), для регистрации быстрых нейтронов – упругое и неупругое рассеяние, а для определения потоков нейтронов с промежуточной энергией рекомендуется уменьшить их энергию до тепловой, пропустив через слой парафина или другого замедлителя. Конструктивно счётчик нейтронов с промежуточной энергией выполняется в виде полой сферы из парафина со стенкой, толщиной порядка 15 см, в центре которой помещается счётчик тепловых нейтронов. Предполагается, что нейтроны промежуточных энергий, падающие на поверхность сферы, будут создавать в её центре поток тепловых нейтронов, который будет пропорционален биологической дозе.

Дозиметрия по существу сводится к определению потоков нейтронов с помощью пропорциональных счётчиков, ионизационных камер, радиационно-химических реакций, фотопластинок..gif" width="19" height="24">- поперечное сечение взаимодействия нейтронов с атомами i-того типа, - средняя доля энергии, теряемая при соударении нейтрона с i-тым атомом, ci – число атомов i-того элемента в 1 г поглотителя.

9. Дозиметрическая и радиометрическая аппаратура.

Детекторами γ-, α- и β-излучений являются сцинтилляционные и пропорциональные счётчики, счётчики Гейгера-Мюллера (в том числе и 4π-счётчики, в которых радиоактивный источник со всех сторон окружён рабочим объёмом счётчика; если источник газообразный, он помещается в рабочий объём газового счётчика), ионизационные камеры, полупроводниковые счётчики и фотопластинки (фотоплёнки).

Ионизационные камеры, главным образом, используют для дозиметрии. Для этих же целей используются калориметрические и химические методы регистрации излучений. Для радиометрических нужд используют, как правило, сцинтилляционные и газовые счётчики, работающие в режиме счёта импульсов.

Для измерения энергетического распределения γ-лучей разработаны сцинтилляционные (анализируется амплитуда импульсов в анодной цепи ФЭУ), магнитные (в которых анализируется вторичное электронное излучение) и дифракционные (в которых анализируется дифракция γ-лучей на кристаллах) γ-спектрометры.

Для анализа β-спектров применяются β-спектрометры, измеряющие энергию электронов по их воздействию на вещество, либо спектрометры, пространственно разделяющие β-частицы, имеющие разные энергии. К приборам 1-ого типа относят спектрометры, функционирование которых основано на ионизации рабочего вещества спектрометра (ионизационная камера, сцинтилляционный детектор). Но они, обладая большой светосилой, не очень точно измеряют энергию β-частиц. К приборам 2-ого типа относятся спектрометры, в которых используются магнитные или электрические поля. Особенно просты и дают лучшее разрешение спектрометры с поперечным магнитным полем, когда электроны движутся по окружностям, радиусы которых пропорциональны импульсам электронов.

Для определения энергии α-частиц, испускаемых радиоактивными элементами, исследование тонкой структуры α-спектров и идентификации новых ядер по энергии α-излучения разработаны α-спектрометры. Функционирование α-спектрометров основано либо на ионизирующем действии α-частиц, либо на магнитном анализе прохождения α-частиц. Поскольку у α-частиц очень малый пробег в веществе (большие линейные потери энергии) приходится использовать очень тонкие источники, которые получают путем испарения солей или окислов исследуемых веществ в вакууме . Обычно производят не абсолютные измерения энергии a - частиц, а сравнение энергии анализируемых a - частиц с энергией a-частиц, испускаемых веществом, спектр a-излучения которого хорошо изучен. Чаще всего используют 210 Po , испускающий a - частицы с Еa=5,3006±0,0026МэВ.

Обычно рассматривают 6 групп дозиметрической и радиометрической аппаратуры. I группа – это приборы для измерения мощности дозы g-лучей и потока нейтронов. Как правило, датчиками в них являются ионизационные камеры, выбор типа которых зависит от мощности дозы излучения, либо газонаполненные или сцинтилляционные счетчики. II группа – приборы с датчиками измерения потоков a- и b - частиц с загрязненных поверхностей. Для измерения характеристик потоков a - частиц применяются датчики со сцинтиллятором из ZnS Ag , либо воздушные плоские многонитные пропорциональные счетчики. Для измерения характеристик b- частиц применяются датчики в виде нескольких b- счетчиков. Существуют приборы, служащие для сигнализации о превышении допустимых уровней загрязненности тела человека и специальной одежды b - и g- активными веществами. III группа – установки для измерения загрязненности воздуха активными газами и аэрозолями . Для этих целей обычно используют ионизационные камеры, которые помещают в замкнутый объем, наполненный загрязненным воздухом. a - и b - активные аэрозоли улавливают мембранными фильтрами при прокачивании через них воздуха, либо осаждают на мишени – электроде с помощью метода электроосаждения (электрофильтры). IV группа – радиометрические установки с датчиками в виде газовых и сцинтилляционных счетчиков, служащих для измерения абсолютной активности проб воды и пищевых продуктов. V группа – комплекты аппаратуры для измерения индивидуальных доз g- лучей и нейтронов. Это фотопленки, малые ионизационные камеры, карманные дозиметры, позволяющие производить отсчеты в процессе работы (внутренний электрод камеры соединен с подвижной нитью, пропорциональное дозе отклонение которой наблюдают с помощью окулярной шкалы малогабаритного микроскопа). VI группа – это установки для измерения внешнего излучения от людей и измерение активности выдыхаемого воздуха, так называемые счетчики импульсов человека – СИЧ. Существуют большие полые сцинтилляционные счетчики и счетные спектрометрические установки с большими кристаллами из NaI для регистрации внешних потоков излучения от людей (g - и жесткое b - излучение). В выдыхаемом человеком воздухе определяют, например, содержание радона и рассчитывают количество радия в организме.

10. Современное дозиметрическое оборудование для обеспечения лучевой терапии в Республике Беларусь.

В лучевой терапии дозиметрическое оборудование применяется:

а) для настройки аппарата лучевой терапии (АЛТ) перед сдачей его в эксплуатацию;

б) для периодического контроля дозиметрических параметров пучков излучения во время эксплуатации АЛТ;

в) для получения дозиметрической информации, необходимой для планирования сеансов облучения и научных целей;

г) для контроля поглощенной дозы, получаемой пациентами при лучевом лечении.

Современное дозиметрическое оборудование можно разделить на следующие группы:

1) оборудование, содержащее детекторы ионизирующего излучения. В первую очередь это клинические дозиметры различных фирм типа UNIDOS, UNIDOS-E, MULTIDOS, ORTIDOS, VIVODOS (Германия), NOMEX, KEITHLEY (США), FARMER (Англия), ДКС-АТ (Беларусь), APOLLO (Швеция).

2) Приборы для контроля параметров пучка излучения, денситометры, фантомы различных типов, компьютеры с необходимым программным обеспечением и др.

К дозиметрам прилагаются контрольные калибровочные источники со 90Sr и набор детекторов (полупроводниковых, ионизационных камер различного объема). Диапазон измерений мощности поглощенной дозы - от 0,4 мкГр/мин до 300 Гр/мин. Диапазон измерений поглощенной дозы - от 500нГр до нескольких десятков Грей. Диапазон энергий рентгеновского излучения - от 30 до 150 кВ; g - излучения – от 1МэВ до 20МэВ; электронного – от 5 до 20МэВ. Величина тока утечки 10-14-10-15А. Относительная погрешность ± 1-2%.

Применяются также термолюминесцентные дозиметры. Небольшие размеры термолюминесцентных детекторов позволяют использовать их при измерении доз внутри гетерогенных фантомов, на коже и в полостных органах пациентов.

Все современные клинические дозиметры, сканеры, измерители дозы матричного типа, автоматизированные водные фантомы имеют возможность подключения к компьютеру. Некоторые из них, например, сканеры, VIVODOS, Multi Cheek вообще без компьютера не могут работать. Компьютеры управляют процессом измерений, обработки и хранения дозиметрической информации.

ИИ не обладают запахом, вкусом или какими-либо другими свойствами, позволяющими человеку регистрировать их. Для измерения количественных и качественных характеристик ИИ используются различные методы, основанные на регистрации эффектов взаимодействия излучения с веществом.

Дозиметры - это приборы, предназначенные для измерения дозы или мощности дозы ИИ. В основе этих приборов лежат регистрация и количественная оценка ионизационного, сцинтилляционного, фотографического, химического и других эффектов, возникающих при взаимодействии ИИ с веществом.

Основные группы дозиметров:

Œ Клинические - для измерения ИИ в рабочем пучке. Используют при подготовке к лучевой терапии и в процессе облучения.

 Дозиметры контроля защиты - для измерения мощности дозы рассеянного излучения на рабочих местах (в системе радиационной безопасности). Эти дозиметры должны быть прямопоказывающими.

Ž Индивидуальные - для контроля облучения лиц, работающих в сфере действия ИИ.

Методы дозиметрии:

ü Биологические - основаны на оценке реакций, которые возникают в тканях при облучении их определенной дозой ИИ (эритемная доза, эпиляционная доза, летальная доза). Являются ориентировочными и применяются в основном в экспериментальной радиобиологии.

ü Химические - заключаются в регистрации необратимых химических реакций, происходящих в некоторых веществах под влиянием облучений (радиохимический метод, фотографический метод).

Радиохимический метод - основан на реакции окисления двухвалентного железа в трехвалентное под действием ИИ
(Fe 2+ Fe 3+), что приводит к изменению окраски (прозрачности). Используются ферросульфатные дозиметры. Так как диапазон этих дозиметров очень велик (от 20 до 400 Гр), они используются только для аварийных ситуаций.

Фотографический метод - под действием ИИ происходит почернение рентгеновской пленки, степень которого пропорциональна поглощенной энергии лучей. По плотности почернения можно судить о дозе облучения. Недостатком этого метода является зависимость показаний дозиметра от качественного состава излучения. Точность определения дозы невысока. С помощью фотопленочных дозиметров удобно определять соответствие светового и радиационного поля на аппаратах для лучевой терапии.

ü Физические - основаны на способности ИИ вызывать ионизацию вещества и превращать электрически нейтральный газ в электропроводящую среду (ионизационная камера, газоразрядный счетчик, сцинтилляционный дозиметр, термолюминесцентный дозиметр, полупроводниковые детекторы).

Сцинтилляционные дозиметры . Используются кристаллы йодистого натрия, активированные таллием. При попадании на них ИИ возникают световые вспышки, которые преобразуются в электрические импульсы, усиливаются и регистрируются счетными устройствами. Сцинтилляционные дозиметры не применяются в клинической дозиметрии из-за своего большого объема и высокой чувствительности, что позволяет рекомендовать их использование в дозиметрии защиты.

Термолюминесцентные дозиметры (ТЛД) . Некоторые твердые кристаллические вещества под действием ИИ способны люминесцировать. По интенсивности свечения определяется доза. ТЛД невелики в объеме, являются непрямопоказывающими (доза накапливается в течение какого-то времени). Широко используются в клинической дозиметрии (измерение дозы на больном, в полости тела) и в качестве индивидуальных дозиметров.

Ионизационная камера - это конденсатор. Состоит из двух электродов, пространство между которыми заполнено воздухом. Под действием ИИ воздух ионизируется, возникает электрический ток. По величине силы тока судим о дозе. Дозиметры, основанные на ионизационном методе, в настоящее время наиболее распространены. Широко применяются в клинической дозиметрии, в дозиметрии защиты и индивидуальной дозиметрии.

Газоразрядный счетчик. Также используется ионизационный эффект излучения. Но к электродам газоразрядного счетчика подводят значительно большее напряжение. Поэтому электроны, образующиеся в счетчике при облучении, приобретают большую энергию и сами вызывают массовую ионизацию атомов и молекул газа. Это позволяет регистрировать с помощью газоразрядных счетчиков очень малые дозы ИИ.

Полупроводниковые (кристаллические) дозиметры. Меняют проводимость в зависимости от мощности дозы. Широко используются наряду с ионизационными дозиметрами.


Дозиметрия ионизирующих излучений - раздел прикладной ядерной физики, в котором рассматриваются свойства ионизирующих излучений, физические величины, характеризующие поле излучения и взаимодействие излучения с веществом (дозиметрические величины). В более узком смысле слова Д. и. и. - совокупность методов измерения этих величин. Важнейший признак дозиметрических величин - их связь с радиационно-индуцированными эффектами, возникающими при облучении объектов живой и неживой природы. Под радиационно-индуцированными эффектами в общем смысле понимают любые изменения в облучаемом объекте, вызванные воздействием ионизирующих излучений . Основной дозиметрической величиной является доза ионизирующего излучения и ее модификации. Задача Д. и. и. - описание дозного поля, сформированного в живом организме в реальных условиях облучения.

Необходимость разработки Д. и. и. возникла вскоре после открытия Рентгеном (W.К. Rö ntgen) в 1895 г. излучения, названного его именем (см. Рентгена лучи ). Интенсивное накопление данных по биологическому действию рентгеновского излучения, с одной стороны, открывало реальную перспективу его применения в медицине, а с другой - указывало на опасность неконтролируемого облучения живого организма. В результате встал вопрос о дозиметрическом обеспечении практического применения источников ионизирующих излучений. В начале 20 в. основными источниками излучения были радий и рентгеновские аппараты, и Д. и. и. сводилась фактически к дозиметрии фотонного ионизирующего излучения (рентгеновского и гамма-излучения). Затем по мере развития технических средств ядерной физики, создания и усовершенствования ускорителей заряженных частиц и особенно после пуска в 1942 г. первого ядерного реактора число источников и связанных с ними видов ионизирующих излучений существенно расширились. В соответствии с этим появились методы дозиметрии потоков заряженных частиц, нейтронов, высокоэнергетического тормозного излучения и др. Стал расти и список дозиметрических величин, соответствующих задачам многообразного практического применения ионизирующих излучений различной природы.

Физической основой Д. и. и. является преобразование энергии излучения в процессе его взаимодействия с атомами или их ядрами, электронами и молекулами облучаемой среды, в результате которого часть этой энергии поглощается веществом. Поглощенная энергия является первопричиной процессов, приводящих к наблюдаемым радиационно-индуцированным эффектам, и потому дозиметрические величины оказываются связанными с поглощенной энергией излучения.

Многообразие условий облучения и многофакторный характер его последствий не позволяют обходиться единственной дозиметрической величиной, приспосабливая ее к изменению этих условий и факторов. Необходим целый набор дозиметрических величин, из которых в зависимости от условий облучения и поставленной задачи выбирают наиболее адекватную меру радиационно-индуцированного эффекта. Примером такой величины является введенный Международной комиссией по радиологическим единицам (МКРЕ) для целей радиационной безопасности показатель эквивалентной дозы (см. Доза ионизирующего излучения ) в точке радиационного поля - максимальная эквивалентная доза внутри тканеэквивалентного шара диаметром 30 см при совмещении центра этого шара с данной точкой. Практическое применение этого показателя встречает определенные трудности, ибо проблему адекватности дозиметрии пока нельзя считать полностью решенной.

При Д. и. и. используют как инструментальные, так и расчетные методы. Все дозиметрические приборы устроены по принципу регистрации радиационно-индуцированных эффектов в некотором модельном объекте - детекторе ионизирующего излучения. В ранний период становления Д. и. и, использовались фотографическое действие ионизирующих излучений, химические превращения и выделение тепла. По мере развития методов регистрации элементарных частиц развивались и методы Д. и. и. В современных условиях используется широкий спектр радиационно-индуцированных эффектов. К уже упомянутым можно добавить ионизационные эффекты в газах и конденсированных средах, изменение электрических свойств полупроводников, деструктивные повреждения твердых тел, люминесценцию, сцинтилляцию и др.

Особое место занимает биологическая дозиметрия использующая в качестве меры дозиметрической величины количественные радиобиологические эффекты, например хромосомные аберрации, изменение морфологического состава крови и другие показатели, однозначно связанные с Д. и. и. (см. Лучевая болезнь , Радиочувствительность ).

Методы Д. и. и. можно классифицировать по разным признакам. Так, в зависимости от вида регистрируемого эффекта различают ионизационный, фотографический, химический, люминесцентный, калориметрический, сцинтилляционный методы, метод следов повреждения и др. При этом имеет место однозначная количественная связь между изменением физических или химических свойств детектора излучения и поглощенной энергией. В клинической дозиметрии распространены ионизационные методы, в которых детектором служат ионизационная камера, твердотельные люминесцентные кристаллы, полупроводники. Последние привлекают малыми размерами детектора.

В СССР выпускают стационарные, носимые и индивидуальные дозиметрические приборы. Стационарные дозиметры применяют в клинической практике, а носимые наиболее часто используют для оценки радиационной обстановки в целях радиационной защиты. Они имеют автономное питание и потому могут использоваться в любой обстановке, в т.ч. в полевых условиях. Индивидуальные дозиметры предназначены для оценки дозы, получаемой лицами, работающими в контакте с ионизирующим излучением. Они могут быть прямопоказывающими (рис. а, б ) или состоять из носимых персоналом ионизационных или термолюминесцентных детекторов (в), показания которых, пропорциональные дозе излучения, определяются на специальном считывающем устройстве.

Клиническая дозиметрия - раздел Д. и. и., занимающийся измерениями и расчетами величин, характеризующих физические и биофизические эффекты облучения больных, получающих лучевую терапию . Основная задача клинической дозиметрии состоит в количественном описании пространственного и временного распределения поглощенной энергии излучения в теле облучаемого больного, а также в поиске, обосновании и выборе индивидуально оптимизируемых условий его облучения.

Основными понятиями и величинами клинической дозиметрии являются поглощенная доза (см. Доза ионизирующих излучений ), дозное поле, дозиметрический фантом, мишень. Дозное поле - это пространственное распределение поглощенной дозы (или ее мощности) в облучаемой части тела больного, тканеэквивалентной среде или дозиметрическом фантоме, моделирующем тело больного по физическим эффектам взаимодействия излучения с веществом, форме и размерам органов и тканей и их анатомическим взаимоотношениям. Информацию о дозном поле представляют в табличном, матричном виде, а также в виде кривых, соединяющих точки одинаковых значений (абсолютных или относительных) поглощенной дозы. Такие кривые называют изодозами, а их семейства - картами изодоз. За условную единицу (или 100%) можно принять поглощенную дозу в любой точке дозного поля, в частности максимальную поглощенную дозу, которая должна соответствовать подлежащей облучению мишени (т.е. области, охватывающей клинически выявленную опухоль и предполагаемую зону ее распространения).

Формирование дозного поля зависит от вида и источника излучения, от метода облучения (внешнего, внутреннего, статического, подвижного и др.), телосложения больного, а также от типа радиационного терапевтического аппарата. Поэтому в состав технической документации аппарата входят атлас дозных полей и рекомендации по его практическому использованию. При необходимости (для новых вариантов и сложных планов облучения) в лечебных учреждениях выполняют фантомные измерения дозных полей, пользуясь клиническими дозиметрами с малогабаритными ионизационными камерами или другими (полупроводниковыми, термолюминесцентными) детекторами, анализаторами дозного поля или изодозографами. Термолюминесцентные детекторы используют также для контроля поглощенных доз у больных.

Лучевой терапевт совместно с инженером-физиком ведет дозиметрическое планирование - выбирает метод облучения, оптимизирует условия облучения больного путем расчета конкурирующих вариантов дозных полей, определяет технологию облучения на конкретном аппарате, а также осуществляет контроль выполнения принятого плана и его динамическую корректировку в процессе лучевого лечения. В связи с развитием методов и средств вычислительной техники, появлением быстродействующих ЭВМ с большим объемом памяти и средств автоматизированного ввода в ЭВМ исходной графической и текстовой информации о больном происходит постепенный переход от ручного к компьютерному планированию облучения. При этом открываются возможности решения обратной задачи клинической дозиметрии - определения условий облучения по задаваемому врачом дозному полю.

В системе МЗ СССР имеется радиационная метрологическая служба, которая ведет проверку клинических дозиметров и дозиметрическую аттестацию радиационных аппаратов. В 1988 г. в СССР начат переход к метрологическому обеспечению лучевой терапии на основе непосредственных измерений поглощенной дозы в воде, прослеживаемых до государственного первичного эталона единицы ее мощности. Все это способствует повышению точности планирования и осуществления облучения.

Согласно современным международным требованиям, для повышения эффективности лучевой терапии в клинической дозиметрии нужно стремиться к дозированию облучения больного с погрешностью не более 5%, по поглощенной дозе в мишени, а измерения поглощенных доз вести с погрешностью не более 3%.

Библиогр.: Иванов В.И. Курс дозиметрии, М., 1988; Клеппер Л.Я. Формирование дозовых полей дистанциойными источниками излучения, М., 1986, библиогр.; Кронгауз А.Н., Ляпидевский В.К. и Фролова А.В. Физические основы клинической дозиметрии, М., 1969; Ратнер Т.Г. и Фадеева М.А. Техническое и дозиметрическое обеспечение дистанционной гамма-терапии, М., 1982, библиогр.

Дозиметрия ионизирующих излучений - раздел прикладной ядерной физики, в котором рассматриваются свойства ионизирующих излучений, физические величины, характеризующие поле излучения и взаимодействие излучения с веществом (дозиметрические величины). В более узком смысле слова Д. и. и. - совокупность методов измерения этих величин. Важнейший признак дозиметрических величин - их связь с радиационно-индуцированными эффектами, возникающими при облучении объектов живой и неживой природы. Под радиационно-индуцированными эффектами в общем смысле понимают любые изменения в облучаемом объекте, вызванные воздействием ионизирующих излучений . Основной дозиметрической величиной является доза ионизирующего излучения и ее модификации. Задача Д. и. и. - описание дозного поля, сформированного в живом организме в реальных условиях облучения.

Необходимость разработки Д. и. и. возникла вскоре после открытия Рентгеном (W.К. Rö ntgen) в 1895 г. излучения, названного его именем (см. Рентгена лучи ). Интенсивное накопление данных по биологическому действию рентгеновского излучения, с одной стороны, открывало реальную перспективу его применения в медицине, а с другой - указывало на опасность неконтролируемого облучения живого организма. В результате встал вопрос о дозиметрическом обеспечении практического применения источников ионизирующих излучений. В начале 20 в. основными источниками излучения были радий и рентгеновские аппараты, и Д. и. и. сводилась фактически к дозиметрии фотонного ионизирующего излучения (рентгеновского и гамма-излучения). Затем по мере развития технических средств ядерной физики, создания и усовершенствования ускорителей заряженных частиц и особенно после пуска в 1942 г. первого ядерного реактора число источников и связанных с ними видов ионизирующих излучений существенно расширились. В соответствии с этим появились методы дозиметрии потоков заряженных частиц, нейтронов, высокоэнергетического тормозного излучения и др. Стал расти и список дозиметрических величин, соответствующих задачам многообразного практического применения ионизирующих излучений различной природы.

Физической основой Д. и. и. является преобразование энергии излучения в процессе его взаимодействия с атомами или их ядрами, электронами и молекулами облучаемой среды, в результате которого часть этой энергии поглощается веществом. Поглощенная энергия является первопричиной процессов, приводящих к наблюдаемым радиационно-индуцированным эффектам, и потому дозиметрические величины оказываются связанными с поглощенной энергией излучения.

Многообразие условий облучения и многофакторный характер его последствий не позволяют обходиться единственной дозиметрической величиной, приспосабливая ее к изменению этих условий и факторов. Необходим целый набор дозиметрических величин, из которых в зависимости от условий облучения и поставленной задачи выбирают наиболее адекватную меру радиационно-индуцированного эффекта. Примером такой величины является введенный Международной комиссией по радиологическим единицам (МКРЕ) для целей радиационной безопасности показатель эквивалентной дозы (см. Доза ионизирующего излучения ) в точке радиационного поля - максимальная эквивалентная доза внутри тканеэквивалентного шара диаметром 30 см при совмещении центра этого шара с данной точкой. Практическое применение этого показателя встречает определенные трудности, ибо проблему адекватности дозиметрии пока нельзя считать полностью решенной.

При Д. и. и. используют как инструментальные, так и расчетные методы. Все дозиметрические приборы устроены по принципу регистрации радиационно-индуцированных эффектов в некотором модельном объекте - детекторе ионизирующего излучения. В ранний период становления Д. и. и, использовались фотографическое действие ионизирующих излучений, химические превращения и выделение тепла. По мере развития методов регистрации элементарных частиц развивались и методы Д. и. и. В современных условиях используется широкий спектр радиационно-индуцированных эффектов. К уже упомянутым можно добавить ионизационные эффекты в газах и конденсированных средах, изменение электрических свойств полупроводников, деструктивные повреждения твердых тел,

люминесценцию, сцинтилляцию и др.

Особое место занимает биологическая дозиметрия использующая в качестве меры дозиметрической величины количественные радиобиологические эффекты, например хромосомные аберрации, изменение морфологического состава крови и другие показатели, однозначно связанные с Д. и. и. (см. Лучевая болезнь , Радиочувствительность ).

Методы Д. и. и. можно классифицировать по разным признакам. Так, в зависимости от вида регистрируемого эффекта различают ионизационный, фотографический, химический, люминесцентный, калориметрический, сцинтилляционный методы, метод следов повреждения и др. При этом имеет место однозначная количественная связь между изменением физических или химических свойств детектора излучения и поглощенной энергией. В клинической дозиметрии распространены ионизационные методы, в которых детектором служат ионизационная камера, твердотельные люминесцентные кристаллы, полупроводники. Последние привлекают малыми размерами детектора.

В СССР выпускают стационарные, носимые и индивидуальные дозиметрические приборы. Стационарные дозиметры применяют в клинической практике, а носимые наиболее часто используют для оценки радиационной обстановки в целях радиационной защиты. Они имеют автономное питание и потому могут использоваться в любой обстановке, в т.ч. в полевых условиях. Индивидуальные дозиметры предназначены для оценки дозы, получаемой лицами, работающими в контакте с ионизирующим излучением. Они могут быть прямопоказывающими (рис. а, б ) или состоять из носимых персоналом ионизационных или термолюминесцентных детекторов (в), показания которых, пропорциональные дозе излучения, определяются на специальном считывающем устройстве.

Клиническая дозиметрия - раздел Д. и. и., занимающийся измерениями и расчетами величин, характеризующих физические и биофизические эффекты облучения больных, получающих лучевую терапию . Основная задача клинической дозиметрии состоит в количественном описании пространственного и временного распределения поглощенной энергии излучения в теле облучаемого больного,

а также в поиске, обосновании и выборе индивидуально оптимизируемых условий его облучения.

Основными понятиями и величинами клинической дозиметрии являются поглощенная доза (см. Доза ионизирующих излучений ), дозное поле, дозиметрический фантом, мишень. Дозное поле - это пространственное распределение поглощенной дозы (или ее мощности) в облучаемой части тела больного, тканеэквивалентной среде или дозиметрическом фантоме, моделирующем тело больного по физическим эффектам взаимодействия излучения с веществом, форме и размерам органов и тканей и их анатомическим взаимоотношениям. Информацию о дозном поле представляют в табличном, матричном виде, а также в виде кривых, соединяющих точки одинаковых значений (абсолютных или относительных) поглощенной дозы. Такие кривые называют изодозами, а их семейства - картами изодоз. За условную единицу (или 100%) можно принять поглощенную дозу в любой точке дозного поля, в частности максимальную поглощенную дозу, которая должна соответствовать подлежащей облучению мишени (т.е. области, охватывающей клинически выявленную и предполагаемую зону ее распространения).

Формирование дозного поля зависит от вида и источника излучения, от метода облучения (внешнего, внутреннего, статического, подвижного и др.), телосложения больного, а также от типа радиационного терапевтического аппарата. Поэтому в состав технической документации аппарата входят атлас дозных полей и рекомендации по его практическому использованию. При необходимости (для новых вариантов и сложных планов облучения) в лечебных учреждениях выполняют фантомные измерения дозных полей, пользуясь клиническими дозиметрами с малогабаритными ионизационными камерами или другими (полупроводниковыми, термолюминесцентными) детекторами, анализаторами дозного поля или изодозографами. Термолюминесцентные детекторы используют также для контроля поглощенных доз у больных.

Лучевой терапевт совместно с инженером-физиком ведет дозиметрическое планирование - выбирает метод облучения, оптимизирует условия облучения больного путем расчета конкурирующих вариантов дозных полей,

определяет технологию облучения на конкретном аппарате, а также осуществляет контроль выполнения принятого плана и его динамическую корректировку в процессе лучевого лечения. В связи с развитием методов и средств вычислительной техники, появлением быстродействующих ЭВМ с большим объемом памяти и средств автоматизированного ввода в ЭВМ исходной графической и текстовой информации о больном происходит постепенный переход от ручного к компьютерному планированию облучения. При этом открываются возможности решения обратной задачи клинической дозиметрии - определения условий облучения по задаваемому врачом дозному полю.

В системе МЗ СССР имеется радиационная метрологическая служба, которая ведет проверку клинических дозиметров и дозиметрическую аттестацию радиационных аппаратов. В 1988 г. в СССР начат переход к метрологическому обеспечению лучевой терапии на основе непосредственных измерений поглощенной дозы в воде, прослеживаемых до государственного первичного эталона единицы ее мощности. Все это способствует повышению точности планирования и осуществления облучения.

Согласно современным международным требованиям, для повышения эффективности лучевой терапии в клинической дозиметрии нужно стремиться к дозированию облучения больного с погрешностью не более 5%, по поглощенной дозе в мишени, а измерения поглощенных доз вести с погрешностью не более 3%.

Библиогр.: Иванов В.И. Курс дозиметрии, М., 1988; Клеппер Л.Я. Формирование дозовых полей дистанциойными источниками излучения, М., 1986, библиогр.; Кронгауз А.Н., Ляпидевский В.К. и Фролова А.В. Физические основы клинической дозиметрии, М., 1969; Ратнер Т.Г. и Фадеева М.А. Техническое и дозиметрическое обеспечение дистанционной гамма-терапии, М., 1982, библиогр.

Радиометрия - обнаружение и измерение числа распадов атомных ядер в радиоактивных источниках или некоторой их доли по испускаемому ядрами излучению.

Дозиметрия - измерение рассеяния и поглощения энергии ионизирующего излучения в определенном материале. Доза излуче­ния определяется энергией и видом падающего излучения, а также природой поглощающего материала.

Дозиметрия и радиометрия направлены на решение разных задач, однако объединяют их общие методические принципы обна­ружения и регистрации ионизирующих излучений. В зависимости от характера задач приборы для измерения ионизирующих излучений делятся на три группы:

1) радиометры предназначены для измерения активности ра­диоактивных веществ, плотности потока ионизирующих излучений, удельной и объемной активности газов, жидкостей, аэрозолей, раз­личных объектов внешней среды, пищевых продуктов, а также удельной поверхностной активности;

2) дозиметры предназначены для измерения экспозиционной дозы рентгеновского и у-излучений, поглощенной дозы излучений, мощности экспозиционной дозы рентгеновского и у-излучений, мощ­ности поглощенной дозы и интенсивности ионизирующих излучений;

3) спектрометры предназначены для измерения распределе­ния излучений по энергии, заряду и массам, а также пространствен­но-временных распределений излучений.

Рассмотрим методы регистрации ионизирующих излучений:

1. Ионизационный метод основан на измерении эффекта взаимодействия излучения с веществом - ионизации газа, запол­няющего регистрационный прибор.

Ионизационные детекторы излучения представляют собой помещенный в герметичную камеру, заполненную воздухом или га­зом, заряженный электрический конденсатор (электроды) для созда­ния в камере электрического поля. Заряженные частицы (а или р), попавшие в камеру детектора, производят в ней первичную иониза­цию газовой среды; у-кванты вначале образуют быстрые электроны в стенке детектора, которые затем вызывают ионизацию газа в камере. В результате образования ионных пар газ становится проводником электрического тока. При отсутствии напряжения на электродах все ионы, появившиеся при первичной ионизации, переходят в ней­тральные молекулы, а при возрастании напряжения под действием электрического поля ионы начинают направленно двигаться, т.е. возникает ионизационный ток. Сила тока служит мерой количества излучения и может быть зарегистрирована прибором. -

При некотором значении напряжения все образованные при излучении ионы достигают электродов, и при увеличении напряже­ния ток не возрастает, т.е. возникает область тока насыщения. Сила ионизационного тока насыщения в данной области зависит от числа первичных пар ионов, созданных ядерным излучением в камере де­тектора. В этих условиях работают ионизационные камеры.

При дальнейшем увеличении напряжения сила тока вновь возрастает, так как образованные излучением ионы, особенно элек­троны, при движении к электродам приобретают ускорения, доста­точные для того, чтобы самим производить ионизацию вследствие соударений с атомами и молекулами газа. Этот процесс получил на­звание ударной или вторичной ионизации, Эту область напряжений называют областью пропорциональности, т.е. областью, где сущест­вует строгая пропорциональность между числом первично образо­ванных ионов и общей суммой ионов, участвующих в создании ионизационного тока. В данном режиме работают пропорциональные счетчики.

При дальнейшем увеличении напряжения сила ионизацион­ного тока уже не зависит от числа первичных пар ионов. Газовое усиление настолько возрастает, что при появлении любой ядерной частицы возникает самостоятельный газовый разряд. Эту область напряжений называют областью Гейгера, в данном режиме работают счетчики Гейгера-Мюллера.

2. Сцинтилляторный метод основан на регистрации фото­электронным умножителем (ФЭУ) вспышек света (сцинтилляций),
возникающих в некоторых веществах (сцинтилляторах) под действи­ем излучения. По составу сцинтилляторы делят на неорганические и
органические, а по агрегатному состоянию - на твердые, пластические, жидкие и газовые.

Из неорганических сцинтилляторов для регистрации излуче­ний широко используют йодистый натрий (цезий), активированный талием - Nal (T1), а также вольфрамат кальция CaWO.», так как они могут быть получены в виде больших монокристаллов. Для реги­страции нейтронов применяют сцинтилляторы из йодистого лития -Lil (Sn).

Органические сцинтилляторы представлены следующими со­единениями: монокристаллы антрацена СцНю, стиблена C M Hi 2 и др.; пластмассы (на основе полистирола и поливинилтолуола); жидкие фосфоры (раствор терфинила) и инертные газы - гелий, аргон, неон и др.

4. Люминесцентный метод основан на накапливании час­ти энергии поглощенного ионизирующего излучения и отдачи его в виде светового свечения после дополнительного воздействия ульт­рафиолетовым излучением (или видимым светом) или нагревом. Под действием излучения в люминофоре (щелочно-галоидных соедине­ниях типа LiF, Nal, фосфатных стекол, активированных серебром) создаются центры фотолюминесценции, содержащие атомы и ионы серебра. Последующее освещение люминофоров ультрафиолетовым светом вызывает видимую люминесценцию, интенсивность которой в диапазоне 0,1-10 Гр пропорциональна дозе, затем достигает максимума (при 350 Гр), а при дальнейшем увеличении дозы падает.

5. Фотографический метод основан на способности излу­чения при взаимодействии с галогенидами серебра (AgBr или AgCI)
фотографической эмульсии восстанавливать металлическое серебро подобно видимому свету, которое после проявления выделяется в виде почернения. При этом степень почернения фотопластинки про­порциональна дозе излучения.

4. Химический метод основан на измерении числа молекул или ионов (радиационно-химический выход), образующихся или пре­терпевших изменение при поглощении веществом излучения.

В химических дозиметрах подобраны вещества с выходом хи­мической реакции, пропорциональным поглощенной энергии ионизи­рующего излучения. В настоящее время широко используется ферросульфатный дозиметр, основанный на реакции окисления под дейст­вием излучения двухвалентного железа в трехвалентное.