Реабсорбции в почечных канальцах. Реабсорбция – это что такое? Как реализуется данный процесс и что он собой представляет? Чем обусловлен процесс реабсорбции воды в почках

Почки в человеческом теле выполняют ряд функций: это и регуляция объема крови и межклеточной жидкости, и удаление продуктов распада, и стабилизация кислотно-щелочного баланса, и регуляция водно-солевого равновесия и так далее. Все эти задачи решаются благодаря мочеобразованию. Канальцевая реабсорбция – один из этапов этого процесса.

Канальцевая реабсорбция

За сутки почки пропускают до 180 л первичной мочи. Эта жидкость из тела не выводится: так называемый фильтрат проходит сквозь канальцы, где практически вся жидкость всасывается, а необходимые для жизнедеятельности вещества – аминокислоты, микроэлементы, витамины, возвращаются в кровь. Продукты распада и обмена удаляются со вторичной мочой. Объем ее намного меньше – около 1,5 л за сутки.

Эффективность почки как органа во многом определяется эффективностью канальцевой реабсорбции. Чтобы представить себе механизм процесса, необходимо разобраться в строении – почечной единицы.

Строение нефрона

«Рабочая» клетка почки состоит из следующих частей.

  • Почечное тельце – клубочковая капсула, внутри расположены капилляры.
  • Проксимальный извитый каналец.
  • Петля Генле – складывается из нисходящей и восходящей части. Тонкая нисходящая располагается в мозговом веществе, изгибается под 180 градусов с тем, чтобы подняться в корковое вещество до уровня клубочка. Эта часть формирует восходящую тонкую и толстую части.
  • Дистальный извитый каналец.
  • Конечный отдел – короткий фрагмент, соединенный с собирательной трубкой.
  • Собирательная трубка – размещается в мозговом веществе, отводит вторичную мочу в почечную лоханку.

Общий принцип размещения таков: в корковом веществе размещаются почечные клубочки, проксимальный и дистальный канальцы, в мозговом – нисходящие и толстые восходящие части и собирательные трубки. Во внутреннем мозговом веществе остаются тонкие отделы, собирательные трубки.
На видео строение нефрона:

Механизм реабсорбции

Для осуществления канальцевой реабсорбции задействуются молекулярные механизмы, аналогичные перемещению молекул через плазматические мембраны: диффузия, эндоцитоз, пассивный и активный транспорт и так далее. Самый значимый – активный и пассивный транспорт.

Активный – проводится против электрохимического градиента. Для его реализации требуется энергия и специальные транспортные системы.

Рассматривают 2 вида активного транспорта:

  • Первично-активный – в ход идет энергия, выделяющаяся при расщеплении аденозинтрифосфорной кислоты. Таким образом перемещаются, например, ионы натрия, кальция, калия, водорода.
  • Вторично-активный – на перенос энергия не тратится. Движущей силой выступает разница в концентрации натрия в цитоплазме и просвете канальца.Переносчик обязательно включает в себя ион натрия. Таким способом через мембрану проходит глюкоза и аминокислоты. Разница в количестве натрия – меньше в цитоплазме, чем снаружи, объясняется выводом натрия в межклеточную жидкость с участием АТФ.

После преодоления мембраны комплекс расщепляется на переносчик – специальный белок, ион натрия и глюкозу. Переносчик возвращается в клетку, где готов присоединить следующий ион металла. Глюкоза же из межклеточной жидкости следует в капилляры и возвращается в кровоток. Реабсорбируется глюкоза только в проксимальном отделе, поскольку лишь здесь формируется требуемый переносчик.

Аминокислоты всасываются по аналогичной схеме. А вот процесс реабсорбции белка сложнее: белок поглощается путем пиноцитоза – захвата жидкости клеточной поверхностью, в клетке распадается на аминокислоты, а затем следует в межклеточную жидкость.

Пассивный транспорт – всасывание производится по электрохимическому градиенту и в поддержке не нуждается: например, всасывание ионов хлора в дистальном канальце. Возможно перемещение по концентрационному, электрохимическому, осмотическому градиентам.

На деле реабсорбция производится по схемам, включающим самые разные способы транспортировки. Причем в зависимости от участка нефрона абсорбироваться вещества могут по-разному или не поглощаться вовсе.

Например, вода усваивается в любом отделе нефрона, но разными методами:

  • около 40–45% воды всасывается в проксимальных канальцах по осмотическому механизму – вслед за ионами;
  • 25–28% воды поглощается в петле Генле по поворотно-протипоточному механизму;
  • в дистальных извитых канальцах поглощается до 25% воды. Причем если в двух предыдущих отделах поглощение воды производится вне зависимости от водной нагрузки, то в дистальных процесс регулируется: вода может выводиться со вторичной мочой или удерживаться.

Объем вторичной мочи достигает всего лишь 1% от первичного объема.
На видео процесс реабсорбции:

Движение реабсорбируемого вещества


Различают 2 метода перемещения реабсорбируемого вещества в межклеточную жидкость:

  • парацеллюрный – переход производится через одну мембрану между двумя плотно соединенными клетками. Это, например, диффузия, или перенос с растворителем, то есть, пассивный транспорт;
  • трансцеллюрный – «через клетку». Вещество преодолевает 2 мембраны: люминальную или апикальную, которая отделяет фильтрат в просвете канальца от клеточной цитоплазмы, и базолатеральную, выступающую барьером между интерстициальной жидкостью и цитоплазмой. Хотя бы один переход реализуется по механизму активного транспорта.

Виды

В разных отделах нефрона реализуются разные методы реабсорбции. Поэтому на практике часто используют разделение по особенностям работы:

  • проксимальный отдел – извитая часть проксимального канальца;
  • тонкий – части петли Генле: тонкая восходящая и нисходящая;
  • дистальный – дистальный извитый каналец, соединяющий и толстая восходящая часть петли Генле.

Проксимальная

Здесь поглощается до 2/3 воды, а также глюкоза, аминокислоты, белки, витамины, большое количество ионов кальция, калия, натрия, магния, хлора. Проксимальный каналец – основной поставщик глюкозы, аминокислот и белков в кровь, так что этот этап является обязательным и независим от нагрузки.

Схемы реабсорбции применяются разные, что определяется видом всасываемого вещества.

Глюкоза в проксимальном канальце поглощается практически полностью. Из просвета канальца в цитоплазму она следует через люминальную мембрану посредством контртранспорта. Это вторичный активный транспорт, для которого нужна энергия. Используется та, что выделяется при перемещении иона натрия по электрохимическому градиенту. Затем глюкоза проходит сквозь базолатеральную мембрану методом диффузии: глюкоза накапливается в клетке, что обеспечивает разницу в концентрации.

Энергия нужна при переходе сквозь люминальную мембрану, перенос через вторую мембрану энергетических затрат не требует. Соответственно, главным фактором поглощения глюкозы оказывается первично-активный транспорт натрия.

По такой же схеме реабсорбируются аминокислоты, сульфат, неорганический фосфат кальция, питательные органические вещества.

Низкомолекулярные белки оказываются в клетке посредством пиноцитоза и в клетке распадаются на аминокислоты и дипептиды. Этот механизм не обеспечивает 100% всасывания: часть белка остается в крови, а часть удаляется с мочой – до 20 г в сутки.

Слабые органические кислоты и слабые основания из-за низкой степени диссоциации реабсорбируются методом неионной диффузии. Вещества растворяются в липидном матриксе и поглощаются по концентрационному градиенту. Всасывание зависит от уровня pH: при его уменьшении диссоциация кислоты падает, а диссоциация оснований повышается. При высоком уровне pH увеличивается диссоциация кислот.

Эта особенность нашла применение при выводе ядовитых веществ: при отравлении в кровь вводят препараты, защелачивающие ее, что увеличивает степень диссоциации кислот и помогает вывести их с мочой.

Петля Генле

Если в проксимальном канальце ионы металлов и вода реабсорбируются практически в одинаковых долях, то в петле Генле всасывается в основном натрий и хлор. Воды же поглощается от 10 до 25%.

В петле Генле реализуется поворотно-протипоточный механизм, основанный на особенности расположения нисходящей и восходящей части. Нисходящая часть не поглощает натрий и хлор, но остается проницаемой для воды. Восходящая всасывает ионы, но для воды оказывается непроницаемой. В итоге всасывание хлорида натрия восходящей частью определяет степень поглощения воды нисходящей частью.

Первичный фильтрат попадает в начальную часть нисходящей петли, где осмотическое давление ниже по сравнению с давлением межклеточной жидкости. Моча спускается по петле, отдавая воду, но сохраняя ионы натрия и хлора.

Поскольку вода выводится, осмотическое давление в фильтрате растет и достигает максимального значения в поворотной точке. Затем моча следует по восходящему участку, сохраняя воду, но теряя ионы натрия и хлора. В дистальный каналец моча попадает гипоосмотическая – до 100–200 мосм/л.

По сути, в нисходящем отделе петли Генле моча концентрируется, а в восходящей – разводится.

На видео строение петли Гентле:

Дистальная

Дистальный каналец слабо пропускает воду, а органические вещества здесь вовсе не всасываются. В этом отделе производится дальнейшее разведение. В дистальный каналец попадает около 15% первичной мочи, а выводится около 1%.

По мере перемещения по дистальному канальцу она становится все более гиперосмотичной, поскольку здесь поглощаются в основном ионы и частично вода – не более 10%. Разведение продолжается в собирательных трубках, где и формируется конечная моча.

Особенностью работы этого сегмента является возможность регулировки процесса всасывания воды и ионов натрия. Для воды регулятором является антидиуретический гормон, а для натрия – альдостерон.

Норма

Для оценки функциональности почки используются различные параметры: биохимический состав крови и мочи, величина концентрационной способности, а также парциальные показатели. К последним и относят и показатели канальцевой реабсорбции.

Скорость клубочковой фильтрации – указывает на выделительные способности органа, это скорость фильтрации первичной мочи, не содержащей белок, через клубочковый фильтр.

Канальцевая реабсорбция указывает на всасывающие способности. Обе эти величины не постоянны и изменяются в течение суток.

Норма СКФ – 90–140 мл/мин. Наиболее высок ее показатель днем, снижается к вечеру, а утром находится на самом низком уровне. При физической нагрузке, потрясениях, почечной или сердечной недостаточности и других недугах СКФ падает. Может увеличиваться на начальных стадиях сахарного диабета и при гипертонии.

Канальцевая реабсорбция не измеряется непосредственно, а рассчитывается как разность между СКФ и минутным диурезом по формуле:

Р = (СКФ – Д) x 100 / СКФ, где,

  • СКФ – скорость клубочковой фильтрации;
  • Д – минутный диурез;
  • Р – канальцевая реабсорбция.

При снижении объема крови – операция, потеря крови, наблюдается повышение канальцевой реабсорбции в сторону роста. На фоне приема диуретиков, при некоторых почечных недугах – уменьшается.

Нормой для канальцевой реабсорбции является 95–99%. Отсюда и столь большая разница между объемом первичной мочи – до 180 л, и объемом вторичной – 1–1,5 л.

Для получения этих величин прибегают к пробе Реберга. С ее помощью вычисляют клиренс – коэффициент очищения эндогенного креатинина.По этому показателю вычисляют СКФ и величину канальцевой реабсорбции.

Пациент удерживается в лежачем положении на протяжении 1 часа. За это время собирается моча. Анализ проводится натощак.

Через полчаса из вены берут кровь.

Затем в моче и крови находят количество креатинина и вычисляют СКФ по формуле:

СКФ = М x Д / П, где

  • М – уровень креатинина в моче;
  • П – уровень вещества в плазме
  • Д – минутный объем мочи. Рассчитывается делением объема на время выделения.

По данным можно классифицировать степень повреждения почки:

  • Уменьшение скорости фильтрации до 40 мл/мин является признаком почечной недостаточности.
  • Уменьшение СКФ до 5–15 мл/мин свидетельствует о терминальной стадии недуга.
  • Уменьшение КР обычно следует после водной нагрузки.
  • Рост КР связан с уменьшением объема крови. Причиной может быть потеря крови, а также нефриты – при таком недуге повреждается клубочковый аппарат.

Нарушение канальцевой реабсорбции

Регуляция канальцевой реабсорбции

Кровообращение в почках выступает процессом относительно автономным. При изменениях АД от 90 до 190 мм. рт. ст. давление в почечных капиллярах удерживается на обычном уровне. Объясняется такая стабильность разницей в диаметре между приносящими и выносящими кровеносными сосудами.

Выделяют два наиболее значимых метода: миогенная ауторегуляция и гуморальная.

Миогенная – при росте АД стенки приносящих артериол сокращаются, то есть, в орган поступает меньший объем крови и давление падает. Сужение чаще всего вызывает ангиотензин II, таким же образом воздействуют тромбоксаны и лейкотриены. Сосудорасширяющими веществами выступают ацетилхолин, дофамин и так далее. В результате их действия нормализуется давление в клубочковых капиллярах с тем, чтобы удерживать нормальный уровень СКФ.

Гуморальная – то есть, при помощи гормонов. По сути, главным показателем канальцевой реабсорбции выступает уровень всасывания воды. Процесс этот можно разделить на 2 этапа: обязательный – тот, что проводится в проксимальных канальцах и независим от водной нагрузки, и зависимый – реализуется в дистальных канальцах и собирательных трубочках. Этот этап регулируется гормонами.

Главный среди них – вазопрессин, антидиуретический гормон. Он сохраняет воду, то есть, способствует задержке жидкости. Синтезируется гормон в ядрах гипоталамуса, перемещается в нейрогипофиз, а оттуда попадает в кровоток. В дистальных отделах имеются рецепторы к АДГ. Взаимодействие вазопрессина с рецепторами приводит к улучшению проницаемости мембран для воды, благодаря чему она поглощается лучше. При этом АДГ не только увеличивает проницаемость, но и определяет уровень проницаемости.

За счет разницы давлений в паренхиме и дистальном канальце вода из фильтрата остается в теле. Но на фоне низкой всасываемости ионов натрия диурез может оставаться высоким.

Всасывание ионов натрия регламентирует альдостерон – , а также натрийуретический гормон.

Альдестерон способствует канальцевой реабсорбции ионов и образуется при снижении уровня ионов натрия в плазме. Гормон регулирует создание всех требуемых для переноса натрия механизмов: канала апикальной мембраны, переносчика, составляющих натрий-калиевого насоса.

Особенно сильно его воздействие на участке собирательных трубочек. «Работает» гормон как в почках, так и в железах, и в ЖКТ, улучшая всасывание натрия. Также альдостерон регулирует чувствительность рецепторов к АДГ.

Альдостерон появляется и по другой причине. При снижении АД синтезируется ренин – вещество, контролирующее тонус сосудов. Под влиянием ренина аг-глобулин из крови трансформируется в ангиотензин I, а затем в ангиотензин II. Последний выступает сильнейшим сосудосуживающим веществом. Кроме того, он запускает выработку альдостерона, обуславливающего реабсорбцию ионов натрия, что вызывает задержку воды. Этот механизм – задержка воды и сужение сосудов, создает оптимальное АД и нормализует кровоток.

Натрийуретический гормон образуется в предсердии при его растяжении. Оказавшись в почках, вещество уменьшает реабсорбцию ионов натрия и воды. При этом количество воды, которое попадает во вторичную мочу увеличивается, что уменьшает общий объем крови, то есть, растяжение предсердий исчезает.

Кроме того, на уровень канальцевой реабсорбции оказывают воздействие и другие гормоны:

  • паратгормон – улучшает всасывание кальция;
  • тиреокальцийтонин – снижает уровень реабсорбции ионов этого металла;
  • адреналин – его влияние зависит от дозы: при малом количестве адреналин снижает СКФ фильтрацию, в большой дозе – здесь канальцевая реабсорбция повышена;
  • тироксин и соматропный гормон – усиливают диурез;
  • инсулин – улучшает поглощение ионов калия.

Механизм влияния разный. Так, пролактин повышает проницаемость клеточной мембраны для воды, а паратирин изменяет осмотический градиент интерстиция, тем самым влияя на осмотический транспорт воды.

Канальцевая реабсорбция – механизм, обуславливающий возвращение воды, микроэлементов и питательных веществ в кровь. Осуществляется возврат — реабсорбция, на всех участках нефрона, но по разным схемам.

Оглавление темы "Проксимальная реабсорбция натрия. Реабсорбция в дистальном канальце. Состав конечной мочи. Свойства мочи. Анализ мочи. Нормальный анализ мочи.":
1. Проксимальная реабсорбция натрия. Антипорт. Котранспорт. Реабсорбция глюкозы. Реабсорбция аминокислот. Симпорт.
2. Дистальная реабсорбция ионов и воды. Реабсорбция в дистальном канальце.
3. Противоточно-множительная канальцевая система почки. Действие вазопрессина на почку.
4. Противоточная сосудистая система мозгового вещества почки.
5. Регуляция канальцевой реабсорбции. Регуляция реабсорбции воды в дистальных канальцах.
6. Регуляция реабсорбции ионов натрия. Альдостерон. Регуляция транспорта ионов кальция, фосфата, магния.
7. Канальцевая секреция. Регуляция канальцевой секреции. Секреция водородных ионов. Секреция ионов калия. Эффективный почечный плазмоток.
8. Состав конечной мочи. Свойства мочи. Суточный диурез. Анализ мочи. Нормальный анализ мочи. Норма анализа мочи.
9. Выведение мочи. Мочеиспускание. Опорожнение мочевого пузыря. Механизмы выведения мочи и мочеиспускания.
10. Экскреторная функция почек.

Проксимальная реабсорбция натрия. Антипорт. Котранспорт. Реабсорбция глюкозы. Реабсорбция аминокислот. Симпорт.

Реабсорбция ионов натрия в проксимальном отделе осуществляется несколькими механизмами активного и пассивного транспорта (рис. 14.9). Во-первых, реабсорбция натрия осуществляется первично активным транспортом . Ионы натрия входит в клетки эпителия через апикальную мембрану пассивно через натриевые каналы по концентрационному градиенту, его выведение через базолатеральные мембраны эпителиальных клеток происходит активно с помощью натрий-калиевых насосов, использующих энергию АТФ. Именно деятельность этих насосов обеспечивает градиент концентрации ионов натрия между внутриканальцевой и внутриклеточной средами. Во-вторых, на апикальной мембране имеется электронейтральный переносчик, обеспечивающий активный обмен Na+ и Н+, при этом ион натрия поступает в клетку в обмен на удаляемый из клетки Н-ион. Такой механизм транспорта носит название антипорта .

Этот переносчик обеспечивает и всасывание бикарбонатного аниона. Профильтровавшийся бикарбонатный анион вместе с Н-ионом образуют угольную кислоту: HCO3 + Н+ = Н2С03. Располагающаяся на щеточной каемке эпителия канальца карбоангидраза катализирует разложение в канальцевой жидкости угольной кислоты: Н2С03 о Н20 + С02, после чего С02 диффундирует в клетку по градиенту концентрации. В клетке под влинием цитоплазменной карбоангидразы протекает обратная реакция: С02 + Н20=Н2С03, угольная кислота диссоциирует: Н2С03 о Н+ + HCO3. Бикарбонатный анион (НСОз) пассивно переносится в перитубулярную жидкость по электрохимическому градиенту, создаваемому активным переносом натрия через ба-золатеральную мембрану, а Н-ион через апикальную мембрану с помощью антипорта Na+-H+ выводится в просвет канальца. Таким образом, сопровождающим всасывающийся ион натрия в начальных отделах проксимального канальца анионом является бикарбонат. Анионы хлора всасываются в начальных отделах плохо из-за низкой проницаемости стенки. Объем мочи в канальце уменьшается из-за пассивной реабсорбции воды, и концентрация хлоридов в его содержимом растет. В конечных участках проксимальных канальцев межклеточные контакты уже проницаемы для хлоридов (концентрация которых повысилась) и они пассивно по градиенту концентрации всасываются из мочи путем парацеллюлярной диффузии, создавая электрохимический градиент для натрия. В-третьих, ион натрия реабсорбируется пассивно, по электрохимическому градиенту, вслед за анионом хлора. Такой пассивный транспорт одного иона (натрия) вместе с пассивным транспортом другого (хлорида) носит название котранспорта. В-четвертых, на апикальной мембране расположены переносчики-котранспортеры натрия и органических веществ (глюкозы, аминокислот), натрия и фосфата или сульфата.

Рис. 14.9. Основные системы транспорта натрия в проксимальном канальце нефрона . Жирной стрелкой выделено поступление натрия в клетку через натриевый канал по концентрационному градиенту (пассивный транпорт путем простой диффузии). На люминальной мембране черными кружками обозначены переносчики, осуществляющие вторично активный котранспорт путем облегченной диффузии (Na+ и глюкоза, Na+ и аминокислоты), либо пассивный котранспорт (Na+ и фосфат), либо антипорт (Na+ и Н+). На базолатеральной мембране расположены насосы, обеспечивающие активный транспорт натрия из клетки (Na+-K+-Hacoc). Черный квадрат - основное вещество плотного межклеточного соединения, при деполимеризации которого возможен пассивный межклеточный транспорт Na.

Проксимальная реабсорбция глюкозы и аминокислот осуществляется с помощью специальных переносчиков щеточной каемки апикальной мембраны эпителиальных клеток. Эти переносчики транспортируют глюкозу или аминокислоту , только если одновременно связывают и переносят натрий. Пассивное перемещение натрия по градиенту концентрации внутрь клеток ведет к транспорту через мембрану и переносчика с глюкозой или аминокислотой. Для реализации этого процесса необходима низкая концентрация натрия в эпителиальной клетке, создающая градиент концентрации между внешней и внутриклеточной средой, что обеспечивается энергозависимой работой натрий-калиевого насоса базальной мембраны. Поскольку перенос глюкозы или аминокислоты связан с натрием, а его транспорт определяется активным удалением натрия из клетки, такой вид транспорта называют вторично активным, или симпортом , т. е. совместным пассивным транспортом одного вещества (глюкоза) из-за активного транспорта другого (натрия) с помощью одного переносчика.

Ввиду того что для реабсорбции глюкозы необходимо связывание каждой ее молекулы с молекулой переносчика, при избытке глюкозы в первичной моче может произойти полная загрузка всех молекул переносчиков и глюкоза уже не сможет всасываться в кровь. Эта ситуация характеризуется понятием «максимальный канальцевый транспорт вещества» (Тм глюкозы), которое отражает максимальную загрузку канальцевых переносчиков при определенной концентрации вещества в первичной моче и, соответственно, в крови. Эта величина составляет от 303 мг/мин у женщин до 375 мг/мин у мужчин. Величине максимального канальцевого транспорта соответствует понятие «почечный порог выведения ».

Почечным порогом выведения называют ту концентрацию вещества в крови и, соответственно, в первичной моче, при которой оно уже не может быть полностью реабсорбировано в канальцах и появляется в конечной моче. Такие вещества, для которых может быть найден порог выведения, т. е. реабсорбирующиеся при низких концентрациях в крови полностью, а при повышенных концентрациях - не полностью, носят название пороговых. Примером является глюкоза, которая полностью всасывается из первичной мочи при концентрациях в плазме крови ниже 10 ммоль/л, но появляется в конечной моче, т. е. полностью не реабсорбируется, при содержании ее в плазме крови выше 10 ммоль/л. Следовательно, для глюкозы порог выведения составляет 10 ммоль/л.

Вещества, которые вообще не реабсорбируются в канальцах (инулин , маннитол ) или мало реабсорбируются и выделяются пропорционально накоплению в крови (мочевина, сульфаты и др.), называются непороговыми, так как для них порога выведения не существует.

Переносчики апикальной мембраны для симпорта натрия и аминокислот лишь относительно специфичны, каждый из них способен транспортировать несколько видов аминокислот. Так, для глутамата и аспартата существует один вид переносчика, для аргинина, лизина - другой.

Рис. 14.10. Фильтрация белка и его реабсорбция в проксимальном отделе канальцев . Гломерулярный фильтр пропускает в первичную мочу лишь мелкие молекулы белков и пептидов. В проксимальных канальцах эти молекулы поглощаются клетками эпителия и гидролизу-ются. Аминокислоты и мелкие пептиды реабсорбируются далее в кровь. С конечной мочой из организма выделяется не более 0,15 г белка в сутки.

Реабсорбция пептидов и белков осуществляется практически полностью в проксимальных канальцах. Количество профильтровавшегося белка относительно невелико и составляет около 1,8 г в сутки. Некоторую его часть составляют альбумины, но фильтрационный барьер клубочков проходят и полипептиды меньшего размера, и в первичную мочу фильтруются, например, соматотропин, а также лизоцим и др. В конечную мочу поступает не более 0,15 г белка в сутки (рис. 14.10). Молекулы альбуминов после связывания с рецепторами на люминальной мембране клеток эпителия канальцев подвергаются эндоцитозу, внутриклеточные пузырьки поглощенного белка сливаются с лизосомами и белковые молекулы гидролизуются пеп-тидазами (аналог внутриклеточного пищеварения). Продукты гидролиза, в основном аминокислоты, выводятся в интерстициальную жидкость и поступают в перитубулярные капилляры. Пептиды, особенно с короткой цепью, подвергаются гидролизу ферментами щеточной каемки (аналог мембранного пищеварения), образующиеся аминокислоты реабсорбируются из просвета канальцев.

Представляют собой парный орган бобовидной формы, расположенный забрюшинно, в поясничной области. Являясь жизненно важным органом, почки человека выполняют ряд физиологических функций, направленных в основном на поддержание постоянства внутренней среды (гомеостаза) организма. Основные гомеостатические почечные механизмы можно представить следующим образом:

  • Поддержание в организме постоянного объёма жидкости (изоволемия), осмотического давления внеклеточной жидкости (изоосмия), электролитного состава внутренней среды организма (изоиония), онкотического давления плазмы крови (изоонкия) и значения рН (изогидрия).
  • Выведение из плазмы крови конечных продуктов обмена (мочевина), избытка глюкозы аминокислот и пептидов, а также неметаболизируемых веществ (ксенобиотиков), в том числе лекарственных препаратов.
  • Регуляция артериального давления путём образования компонентов прессорной (ренин из клеток юкстагломерулярного аппарат) и депрессорной (простагландины А и Е из звездчатых клеток интерстиция мозгового вещества) систем.
  • Регуляция эритропоэза за счёт выделения почками гормона эритропоэтина.
  • Участие в механизмах гемостаза, поскольку в почках происходит обмен гепарина и синтезируется фермент урокиназа.

Выполнение почками гомеостатических функций связано с деятельностью их основной структурно-функциональной единицы - нефрона. Всего в почках человека насчитывается около 1,5 млн нефронов. В нефронах происходят три основных процесса функционирования почек: фильтрация, реабсорбция и секреция .


Фильтрация

Процесс фильтрации происходит в начальной части нефрона - почечных клубочках, где образуется первичная моча. В норме объём фильтрации составляет около 120 мл в минуту и определяется величиной фильтрационного давления, которое возникает в результате разности между гидростатическим давлением в сосудах клубочков с одной стороны и суммой онкотического давления плазмы и давления в капсуле Боумена - с другой.

Гидростатическое давление в капиллярах клубочков довольно постоянно и зависит главным образом от тонуса приносящей и выносящей артериол. Онкотическое давление плазмы определяется содержанием в ней белка. Давление в полости Боумена зависит от проходимости канальцев и мочевыводящих путей.

Снижению клубочковой фильтрации способствуют понижение артериального давления, повышение онкотического давления плазмы и внутрипочечного давления, спазм приносящей артериолы, уменьшение проницаемости мембраны, числа клубочков и поверхности фильтрации. Напротив, увеличению фильтрации способствуют: спазм выносящих и расширение приносящих артериол, гипоонкия крови, повышение проницаемости мембран клубочков.

Реабсорбция

По своему составу первичная моча близка к плазме крови, но отличается от последней отсутствием крупнодисперсных белков, поскольку мембрана клубочков для них непроницаема, а также несколько меньшей концентрацией электролитов, так как часть из них связана с такими белками. Всего за сутки в почках человека фильтруется до 180 литров первичной мочи, однако среднесуточный объём мочи составляет только 1,5 л. Такое значительное снижение объёма выделяемой жидкости является результатом процесса усиленной реабсорбции воды, электролитов, аминокислот, глюкозы и других веществ.

Всего на этапе реабсорбции всасывается около 99% первичной мочи. При этом различают пороговые и беспороговые вещества. Пороговые всасываются до тех пор, пока их концентрация в крови не достигнет определённого уровня (глюкоза, аминокислоты , фосфаты, сульфаты, бикарбонаты). Всасывание беспороговых веществ происходит вне зависимости от их концентрации в крови (белки).

Реабсорбция веществ в почках может происходить с помощью нескольких различных механизмов, таких как:

  • Активный энергозависимый транспорт веществ специфическими переносчиками против электрохимического или концентрационного градиентов (так транспортируются: глюкоза, аминокислоты, ионы натрия, калия, магния и др.).
  • Пассивный транспорт по концентрационному, осмотическому или электрохимическому градиентам (так транспортируются: вода, мочевина, бикарбонаты, ионы Cl).
  • Транспорт белков путем пиноцитоза.

Секреция

Одновременно с реабсорбцией происходит активное выделение в просвет канальцев ряда веществ - это так называемый процесс секреции . При этом часть секретируемых веществ образуется в почечном эпителии (Н+ и аммиак). Однако большее их количество извлекается эпителием из внеклеточной жидкости с помощью специфических транспортных систем, например, мочевая и желчные кислоты, ионы калия, адреналин, серотонин, гистамин, контрастные вещества, лекарственные препараты (пенициллин, атропин, хинин и др.).

В результате процессов реабсорбции и секреции формируется окончательный состав и плотность мочи, составляющая в норме 1,014-1,021 г/мл. У здорового человека объем и плотность мочи могут варьировать в широких пределах в зависимости от характера пищи и количества поступившей в организм жидкости.

Источники:
1. Федюкович Н.И. / Анатомия и физиология человека // Феникс, 2003.
2. Сумин С.А. / Неотложные состояния // Фармацевтический мир, 2000.

Реабсорбция дословно означает - обратное поглощение жидкости. Имеется ввиду функция впитывания из мочи разных элементов и их транспортировка назад в лимфу и кровь. Такими веществами могут выступать белок, декстроза, натрий, аминокислоты, вода и другие, органические и неорганические соединения.

Общие сведения

Обратное всасывание органических веществ происходит через почечные канальца с помощью особых клеток - «переносчиков». Они играют роль своеобразного фильтра и в них отсеиваются те элементы, которых в организме переизбыток или в которых нет нужды (продукты распада). К примеру, при диабете организм не нуждается в сахаре и он автоматически будет оставаться в ионных каналах.

Так называемый фильтрационный аппарат окружен апикальной мембраной, в которой и сосредоточены «транспортеры», именно они ответственны за доставку веществ к другим клеткам. Они выполняют функцию насосов и работают на энергии, которую вырабатывают митохондрии. Таким образом, необходимые соединения попадают в межклеточную жидкость, а затем в русло сосудов.

Виды реабсорбции


Схема процесса реабсорбции в канальцах почек.

Прием питательных веществ, происходит через разные отделы каналов, в этой зависимости различают два вида реабсорбции:

Проксимальная

Она обуславливает транспортировку в организм из первичной мочи аминокислот, белка, декстрозы и витаминов. Поглощение в этом случае происходит почти в полном объеме, отфильтровывается только 1/3 всего объема. Механизм реабсорбции воды пассивный и находится в зависимости от содержания в моче гидрохлорида и щелочи. Бикарбонат может всасываться как быстрым, так и медленным способом - при вхождении и выведении из канальцев, элемент ведет себя динамично, а при прохождении через мембрану поведение можно охарактеризовать как заторможенное. В роли переносчика здесь выступает гидрокарбонат.

При прохождении через канальца объем мочи уменьшается - так как жидкость реабсорбируется пассивно и, это приводит к высокой концентрации бикарбоната. Они будут усваиваться вместе с жидкостью. Такая заторможенность в канальцах обеспечивает консистенцию мочи, сходную с кровяной плазмой. Кроме того, в проксимальных отделах поглощаются фосфаты, катионы, ионы калия, гидрохлорида, мочевины и мочевой кислоты.

Аминокислоты и декстроза переносятся в кровь при помощи клеток эпителия, которые находятся в щеточной каемке апикальной мембраны. Поглощение данных веществ возможно только при наличии одновременной связи с гидрохлоридом. Чтобы это осуществить - концентрация должна быть низкой. Поэтому в процессе транспортировки бикарбоната активно удаляется из клетки - такой процесс называют симпортом.

Проксимальная реабсорбция глюкозы требует соединения ее молекулы с транспортирующей клеткой. Но в том случае, когда ее содержание в первичной моче слишком велико - происходит перегруз возможностей переносчиков. Это ведет к тому, что этот элемент уже не сможет попадать обратно в кровь. И соответственно, концентрация этой субстанции в конечной моче увеличена. Из этого можно сделать вывод, что достигнут почечный порог выведения или достигнута величина максимального проточного транспорта вещества.

Допустимое содержание сахара в крови различно для мужчин и женщин. Для первых этот показатель равен 375 мг/мин, а для вторых -303 мг/мин. Глюкоза является примером пороговых веществ, т. е тех, которые имеют предельную концентрацию. Примером же соединений, которые не всасываются в кровь или мало всасываются, могут служить инулин, манитол, сульфаты, мочевина. Их еще называют непороговыми. Подразумевается, что у них отсутствует порог выведения. В процессе проксимального поглощения пептиды и белки почти полностью возвращаются в кровь и лимфу. Лишь малая их доля содержится в конечной моче.

Дистальная

Этот вид реабсорбции гораздо меньше проксимальной. Но именно дистальное поглощение веществ влияет на конечный состав мочи и ее концентрацию. В этих отделах канальцев щелочь проходит реабсорбцию активно, а хлорид, наоборот, - пассивно. Активно транспортируются калий, ионы кальция и фосфаты. К тому же, благодаря такому элементу, как вазопрессин - увеличевается усваиваемость мочевины и она попадает в межклеточную жидкость.


Схема мочевыделительной системы.

Почечная система состоит из собирательных трубочек и петли Гентле. Такое строение дает почкам возможность образования мочи различной концентрации и обусловливает усиленную реабсорбцию. В почках она движется в разных направлениях, а фильтрация происходит в нефроне. Фильтрация в нефроне обуславливает образование более насыщенного раствора в районе нисходящего колена и менее насыщенного из-за количества гидрокарбоната - в области восходящего колена петли Гентле. Собирательная трубочка водонепроницаема и возможность реабсорбции существует только при наличии вазепрессина. Из-за этого воды скапливается мало и повышается насыщенность конечной мочи.

В результате активного всасывания большинства осмотически активных компонентов фильтрата через стенки канальцев реабсорбируется вода, движущаяся вследствие диффузии, т.е. пассивно.
Для количественной характеристики судьбы различных веществ в нефроне их сопоставляют с выделением веществ, которые полностью фильтруются в клубочках и в дальнейшем целиком выделяются с вторичной мочой.
Клиренс - коэффициент очищения крови от различных веществ - понятие в известной степени условное. В количественном отношении он характеризуется объемом плазмы крови, полностью очищаемым почками от того или иного вещества за 1 мин. Клиренс определяется по так называемым «беспороговым» веществам, т.е. веществам, полностью выделяемым при однократном прохождении через почки. Клиренс инулина определяет объем клубочковой фильтрации и равен примерно 120 мл/мин. Клиренс парааминогиппуровой кислоты используется для оценки эффективного почечного плазмотока и равен 600-650 мл/мин.
В проксимальном отделе нефрона секретируются преимущественно метаболиты, в дистальном - ионы К, Н, NH4.

Нарушение реабсорбции белка

Фильтруемая глюкоза практически полностью реабсорбируется клетками проксимальных канальцев и обычно она выделяется с мочой происходит в незначительных количествах. При реабсорбции глюкоза соединяется с переносчиком (она фосфорилируется) и переносится через базальную часть клетки в кровь. Существенна роль ионов натрия и соответственно Na-насоса.
При гипергликемиях, сопровождающих сахарный диабет, содержание глюкозы в крови превышает уровень «почечного порога» 8 ммоль/л, через клубочки фильтруется много глюкозы, и ферментные системы не способны обеспечить полную реабсорбцию, Развивается глюкозурия. Правда, в далеко зашедших случаях сахарного диабета глюкозурии может и не быть в связи с повреждением почек (ангиопатии) и уменьшением фильтрации. Наследственный дефект ферментных систем реабсорбции глюкозы проявляется в виде почечного сахарного диабета доминантно наследуемого заболевания, при котором развивается глюкозурия на фоне нормального или даже пониженного уровня глюкозы крови. Глюкозурия может быть следствием повреждения эпителия канальцев при ишемиях почек или отравлениях ртутьсодержащими препаратами или лизолом.

Нарушение реабсорбции белка

Белок реабсорбируется в проксимальных канальцах путем пиноцитоза, частично расщепляется, и затем низкомолекулярные компоненты поступают в кровь. Механизмы реабсорбции белка изучены мало. Известно, в частности, существенное значение гемодинамики. Появление белка в моче обозначается как протеинурия (альбуминурия чаще). Временная невысокая протеинурия до 1 г/л может встречаться у здоровых лиц после интенсивной продолжительной физической работы. Постоянная и более высокая протеинурия - признак заболевания почек. По механизму развития ее условно подразделяют на гломерулярную и тубулярную (клубочковую и канальцевую). При гломерулярной протеинурии в связи с повышением проницаемости фильтрующей мембраны белок в больших количествах поступает в полость капсулы Шумлянского-Боумена, что превышает ребсорбционнные возможности канальцевого аппарата. При повреждении клубочков развивается умеренная протеинурия. Правда, степень протеинурии не отражает тяжести заболевания почек. Тубулярная протеинурия связана с нарушением реабсорбции белка на фоне повреждения эпителия канальцев (амилоидоз, сулемовый некронефроз) либо при нарушении лимфооттока. Массивная протеинурия наблюдается при нефротическом синдроме, когда повреждаются и клубочки, и канальцы.

{module директ4}

Транспорт электролитов в нефроне

Клетки проксимального отдела нефрона реабсорбируют большинство компонентов ультрафильтрата, но ведущее значение в этом процессе принадлежит реабсорбции натрия с сопутствующими анионами. Именно реабсорбция натрия - наиболее значительная по объему и энергетическим затратам функция почек. Реабсорбция натрия в значительной степени определяет общее количество выделяемой мочи, участие почек в регуляции воды в организме, осмотическую концентрацию, ионный состав крови и другие жизненно важные показатели. В сутки почки фильтруют 1200 г натрия, а выделение не превышает 5-10 г. Реабсорбция натрия в различных отделах нефрона имеет выраженные особенности. Так, в проксимальных отделах, где реабсорбируется до 75% профильтрованного натрия, его реабсорбция - активный процесс, но осуществляется она против невысокого градиента. Реабсорбция натрия в дистальных отделах осуществляется против высокого концентрационного градиента, что и обусловливает выделение мочи, почти не содержащей ионов натрия. Как установлено, дистальная реабсорбция натрия регулируется альдостероном - гормоном коры надпочечников. Биохимические механизмы активного транспорта ионов натрия во многом остаются неясными. Придается определенное значение Mg-зависимой АТФазе, СДГ, альфа-кетоглютаратдегидрогеназе.
Нарушения реабсорбции ионов натрия могут развиться, когда снижена продукция альдостерона либо при действии ингибиторов (осмотические диуретики), либо при снижении чувствительности почечного эпителия к альдостерону. В таких условиях наряду с ионами натрия теряется и вода с возможным развитием дегидратации.
Выделение ионов калия составляет около 10% профильтровавшегося в клубочках, причем ионы калия не только реабсорбируются, но и частично секретируются в дистальных канальцах.

Осмотическое разведение и концентрирование мочи

Из 120 мл фильтрата реабсорбируются за 1 мин 119 мл. До 85% данного количества реабсорбируется в проксимальных отделах канальцев вслед за осмотически активными веществами (Na, глюкоза и др.), что определяется как «обязательная реабсорбция» воды. Около 15% реабсорбируется в дистальных отделах и собирательных трубках -«факультативная реабсорбция».
Уровень обязательной реабсорбции может падать при нарушении реабсорбции ионов натрия или глюкозы (полиурия при сахарном диабете, назначении осмотических диуретиков альдоктан). Факультативная реабсорбция воды подавляется при недостатке АДГ либо отсутствии реакции почечного эпителия на последний (формы несахарного диабета).
Почки способны выделять мочу в 4 раза гипертоничнее и в 6 раз гипотоничнее плазмы крови с колебаниями относительной осмотической концентрации 1002-1035. Снижение способности почек концентрировать мочу выражается в виде гипостенурии либо изостенурии.
Отмечается полное прекращение осмотического концентрирования. Максимальная осмотическая концентрация составляет 270-330 ммоль/л (относительная - 1010-1012).
Суточный диурез у здоровых взрослых - около 70% от экзогенно введенной воды. Минимальный объем мочи, необходимый для выделения шлаков - 500 мл. Полиурия - выделение суточного количества мочи более 2000 мл, олигурия - 400-500 мл, анурия - до 200 мл.
В патогенезе нарушений выделения мочи важное значение имеет состояние нервной и гуморальной регуляции. Эмоциональные факторы могут изменять диурез, причем активация процессов возбуждения в коре головного мозга приводит к полиурии, а торможения - колигурии. Полиурию и олигурию можно получить условно-рефлекторным путем либо путем гипнотического внушения.
Довольно часто в условиях патологии встречается рефлекторная болевая анурия. Рефлекторное торможение мочеотделения возможно с различных рефлексогенных зон. В патогенезе особое значение имеет рено-ренальный рефлекс, когда травма или иное повреждение одной почки вызывает временную анурию другой, неповрежденной. При этом вследствие активации симпатоадреналовой системы повышается тонус почечных артериол, что и приводит к снижению клубочковой фильтрации.
Имеют значение гормональные влияния - тироксин увеличивает клубочковую фильтрацию и, подобно глюкокортикоидам, повышает диурез.