Теорема моментов для системы материальных точек. Теорема об изменении момента количества движения. Задачи для самостоятельного решения

  • 1. Алгебраический момент количества движения относительно центра. Алгебраический О -- скалярная величина, взятая со знаком (+) или (-) и равная произведению модуля количества движения m на расстояние h (перпендикуляр) от этого центра до линии, вдоль которой направлен вектор m :
  • 2. Векторный момент количества движения относительно центра.

Векторный момент количества движения материальной точки относительно некоторого центра О -- вектор, приложенный в этом центре и направленный перпендикулярно плоскости векторов m и в ту сторону, откуда движение точки видно против хода часовой стрелки. Это определение удовлетворяет векторному равенству


Моментом количества движения материальной точки относительно некоторой оси z называется скалярная величина, взятая со знаком (+) или (-) и равная произведению модуля проекции вектора количества движения на плоскость, перпендикулярную этой оси, на перпендикуляр h, опущенный из точки пересечения оси с плоскостью на линию, вдоль которой направлена указанная проекция:

Кинетический момент механической системы относительно центра и оси

1. Кинетический момент относительно центра.

Кинетическим моментом или главным моментом количеств движения механической системы относительно некоторого центра называется геометрическая сумма моментов количеств движения всех материальных точек системы относительно того же центра.

2. Кинетический момент относительно оси.

Кинетическим моментом или главным моментом количеств движения механической системы относительно некоторой оси называется алгебраическая сумма моментов количеств движения всех материальных точек системы относительно той же оси.

3. Кинетический момент твердого тела, вращающегося вокруг неподвижной оси z с угловой скоростью.

Теорема об изменении момента количества движения материальной точки относительно центра и оси

1. Теорема моментов относительно центра.

Производная по времени от момента количества движения материальной точки относительно некоторого неподвижного центра равна моменту силы, действующей на точку, относительно того же центра

2. Теорема моментов относительно оси.

Производная по времени от момента количества движения материальной точки относительно некоторой оси равна моменту силы, действующей на точку, относительно той же оси

Теорема об изменении кинетического момента механической системы относительно центра и оси

Теорема моментов относительно центра.

Производная по времени от кинетического момента механической системы относительно некоторого неподвижного центра равна геометрической сумме моментов всех внешних сил, действующих на систему, относительно того же центра;

Следствие. Если главный момент внешних сил относительно некоторого центра равен нулю, то кинетический момент системы относительно этого центра не изменяется (закон сохранения кинетического момента).

2. Теорема моментов относительно оси.

Производная по времени от кинетического момента механической системы относительно некоторой неподвижной оси равна сумме моментов всех внешних сил, действующих на систему, относительно этой оси

Следствие. Если главный момент внешних сил относительно некоторой оси равен нулю, то кинетический момент системы относительно этой оси не изменяется.

Например, = 0, тогда L z = const.

Работа и мощность сил

Работа силы -- скалярная мера действия силы.

1. Элементарная работа силы.

Элементарная работа силы -- это бесконечно малая скалярная величина, равная скалярному произведению вектора силы на вектор бесконечного малого перемещения точки приложения силы: ; - приращение радиуса-вектора точки приложения силы, годографом которого является траектория этой точки. Элементарное перемещение точки по траектории совпадает с в силу их малости. Поэтому

если то dA > 0;если, то dA = 0;если , то dA < 0.

2. Аналитическое выражение элементарной работы.

Представим векторы и d через их проекции на оси декартовых координат:

, . Получим (4.40)

3. Работа силы на конечном перемещении равна интегральной сумме элементарных работ на этом перемещении

Если сила постоянная, а точка ее приложения перемещается прямолинейно,

4. Работа силы тяжести. Используем формулу:Fx = Fy = 0; Fz = -G = -mg;

где h- перемещение точки приложения силы по вертикали вниз (высота).

При перемещении точки приложения силы тяжести вверх A 12 = -mgh (точка М 1 -- внизу, M 2 -- вверху).

Итак,. Работа силы тяжести не зависит от формы траектории. При движении по замкнутой траектории (M 2 совпадает с М 1 ) работа равна нулю.

5. Работа силы упругости пружины.

Пружина растягивается только вдоль оси х:

F y = F z = О, F x = = -сх;

где - величина деформации пружины.

При перемещении точки приложения силы из нижнего положения в верхнее направление силы и направление перемещения совпадают, тогда

Поэтому работа силы упругости

Работа сил на конечном перемещении; Если = const, то

где - конечный угол поворота; , где п -- число оборотов тела вокруг оси.

Кинетическая энергия материальной точки и механической системы. Теорема Кенига

Кинетическая энергия - скалярная мера механического движения.

Кинетическая энергия материальной точки - скалярная положительная величина, равная половине произведения массы точки на квадрат ее скорости,

Кинетическая энергия механической системы -- арифметическая сумма кинетических энергий всех материал точек этой системы:

Кинетическая энергия системы, состоящей из п связанных между собой тел, равна арифметической сумме кинетических энергий всех тел этой системы:

Теорема Кенига

Кинетическая энергия механической системы в общем случае ее движения равна сумме кинетической энергии движения системы вместе с центром масс и кинетической энергии системы при ее движении относительно центра масс:

где Vkc -- скорость k- й точки системы относительно центра масс.

Кинетическая энергия твердого тела при различном движении

Поступательное движение.

Вращение тела вокруг неподвижной оси . ,где -- момент инерции тела относительно оси вращения.

3. Плоскопараллельное движение. , где - момент инерции плоской фигуры относительно оси, проходящей через центр масс.

При плоском движении тела кинетическая энергия складывается из кинетической энергии поступательного движения тела со скоростью центра масс и кинетической энергии вращательного движения вокруг оси, проходящей через центр масс, ;

Теорема об изменении кинетической энергии материальной точки

Теорема в дифференциальной форме.

Дифференциал от кинетической энергии материальной точки равен элементарной работе силы, действующей на точку,

Теорема в интегральной (конечной) форме.

Изменение кинетической энергии материальной точки на некотором перемещении равно работе силы, действующей на точку, на том же перемещении.

Теорема об изменении кинетической энергии механической системы

Теорема в дифференциальной форме.

Дифференциал от кинетической энергии механической системы равен сумме элементарных работ внешних и внутренних сил, действующих на систему.

Теорема в интегральной {конечной) форме.

Изменение кинетической энергии механической системы на некотором перемещении равно сумме работ внешних и внутренних сил, приложенных к системе, на том же перемещении. ; Для системы твердых тел = 0 (по свойству внутренних сил). Тогда

Закон сохранения механической энергии материальной точки и механической системы

Если на материальную точку или механическую систему действуют только консервативные силы, то в любом положении точки или системы сумма кинетической и потенциальной энергий остается величиной постоянной.

Для материальной точки

Для механической системы Т+ П= const

где Т+ П -- полная механическая энергия системы.

Динамика твердого тела

Дифференциальные уравнения движения твердого тела

Эти уравнения можно получить из общих теорем динамики механической системы.

1. Уравнения поступательного движения тела -- из теоремы о движении центра масс механической системы В проекциях на оси декартовых координат

2. Уравнение вращения твердого тела вокруг неподвижной оси - из теоремы об изменении кинетического момента механической системы относительно оси, например, относительно оси

Так как кинетический момент L z твердого тела относительно оси, то если

Так как или, то уравнение можно записать в виде или,форма записи уравнения зависит от того, что следует определить в конкретной задаче.

Дифференциальные уравнения плоскопараллельного движения твердого тела представляют собой совокупность уравнений поступательного движения плоской фигуры вместе с центром масс и вращательного движения относительно оси, проходящей через центр масс:

Физический маятник

Физическим маятником называется твердое тело, вращающееся вокруг горизонтальной оси, не проходящей через центр масс тела, и движущееся под действием силы тяжести.

Дифференциальное уравнение вращения

В случае малых колебаний.

Тогда, где

Решение этого однородного уравнения.

Пусть при t=0 Тогда

-- уравнение гармонических колебаний.

Период колебаний маятника

Приведенная длина физического маятника -- это длина такого математического маятника, период колебаний которого равен периоду колебаний физического маятника.

Общие теоремы динамики системы тел. Теоремы о движении центра масс, об изменении количества движения, об изменении главного момента количества движения, об изменении кинетической энергии. Принципы Даламбера, и возможных перемещений. Общее уравнение динамики. Уравнения Лагранжа.

Содержание

Работа, которую совершает сила , равна скалярному произведению векторов силы и бесконечно малому перемещению точки ее приложения :
,
то есть произведению модулей векторов F и ds на косинус угла между ними.

Работа, которую совершает момент сил , равна скалярному произведению векторов момента и бесконечно малого угла поворота :
.

Принцип Даламбера

Суть принципа Даламбера состоит в том, чтобы задачи динамики свести к задачам статики. Для этого предполагают (или это заранее известно), что тела системы имеют определенные (угловые) ускорения. Далее вводят силы инерции и (или) моменты сил инерции, которые равны по величине и обратные по направлению силам и моментам сил, которые по законам механики создавали бы заданные ускорения или угловые ускорения

Рассмотрим пример. Путь тело совершает поступательное движение и на него действуют внешние силы . Далее мы предполагаем, что эти силы создают ускорение центра масс системы . По теореме о движении центра масс, центр масс тела имел бы такое же ускорение, если бы на тело действовала сила . Далее мы вводим силу инерции:
.
После этого задача динамики:
.
;
.

Для вращательного движения поступают аналогичным образом. Пусть тело вращается вокруг оси z и на него действуют внешние моменты сил M e zk . Мы предполагаем, что эти моменты создают угловое ускорение ε z . Далее мы вводим момент сил инерции M И = - J z ε z . После этого задача динамики:
.
Превращается в задачу статики:
;
.

Принцип возможных перемещений

Принцип возможных перемещений применяется для решений задач статики. В некоторых задачах, он дает более короткое решение, чем составление уравнений равновесия. Особенно это касается систем со связями (например, системы тел, соединенные нитями и блоками), состоящих из множества тел

Принцип возможных перемещений .
Для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы была равна нулю.

Возможное перемещение системы - это малое перемещение, при котором не нарушаются связи, наложенные на систему.

Идеальные связи - это связи, которые не совершают работы при перемещении системы. Точнее, сумма работ, совершаемая самими связями при перемещении системы равна нулю.

Общее уравнение динамики (принцип Даламбера - Лагранжа)

Принцип Даламбера - Лагранжа - это объединение принцип Даламбера с принципом возможных перемещений. То есть, при решении задачи динамики, мы вводим силы инерции и сводим задачу к задаче статики, которую решаем с помощью принципа возможных перемещений.

Принцип Даламбера - Лагранжа .
При движении механической системы с идеальными связями в каждый момент времени сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы равна нулю:
.
Это уравнение называют общим уравнением динамики .

Уравнения Лагранжа

Обобщенные координаты q 1 , q 2 , ..., q n - это совокупность n величин, которые однозначно определяют положение системы.

Число обобщенных координат n совпадает с числом степеней свободы системы.

Обобщенные скорости - это производные от обобщенных координат по времени t .

Обобщенные силы Q 1 , Q 2 , ..., Q n .
Рассмотрим возможное перемещение системы, при котором координата q k получит перемещение δq k . Остальные координаты остаются неизменными. Пусть δA k - это работа, совершаемая внешними силами при таком перемещении. Тогда
δA k = Q k δq k , или
.

Если, при возможном перемещении системы, изменяются все координаты, то работа, совершаемая внешними силами при таком перемещении, имеет вид:
δA = Q 1 δq 1 + Q 2 δq 2 + ... + Q n δq n .
Тогда обобщенные силы являются частными производными от работы по перемещениям:
.

Для потенциальных сил с потенциалом Π ,
.

Уравнения Лагранжа - это уравнения движения механической системы в обобщенных координатах:

Здесь T - кинетическая энергия. Она является функцией от обобщенных координат, скоростей и, возможно, времени. Поэтому ее частная производная также является функцией от обобщенных координат, скоростей и времени. Далее нужно учесть, что координаты и скорости являются функциями от времени. Поэтому для нахождения полной производной по времени нужно применить правило дифференцирования сложной функции:
.

Использованная литература:
С. М. Тарг, Краткий курс теоретической механики, «Высшая школа», 2010.

Количество движения системы, как векторная величина, определяется формулами (4.12) и (4.13).

Теорема. Производная от количества движения системы по времени равна геометрической сумме всех действующих на нее внешних сил.

В проекциях декартовые оси получим скалярные уравнения.

Можно записать векторное

(4.28)

и скалярные уравнения

Которые выражают теорему об изменении количества движения системы в интегральной форме: изменение количества движения системы за некоторый промежуток времени равно сумме импульсов за тот же промежуток времени. При решении задач чаще используются уравнения (4.27)

Закон сохранения количества движения

Теорема об изменении кинетического момента

Теорема об изменении момента количества движения точки относительно центра: производная по времени от момента количества движения точки относительно неподвижного центра равна векторному моменту, действующей на точку силы относительно того же центра.

Или (4.30)

Сравнивая (4.23) и (4.30), видим, что моменты векторов и связаны такой же зависимостью, какой связаны сами векторы и (рис. 4.1). Если спроектировать равенство на ось , проходящую через центр О, то получим

(4.31)

Это равенство выражает теорему момента количества движения точки относительно оси.

Рис. 4.1.
Теорема об изменении главного момента количества движения или кинетического момента механической системы относительно центра: производная по времени от кинетического момента системы относительно некоторого неподвижного центра равно сумме моментов всех внешних сил относительно того же центра.

(4.32)

Если спроектировать выражение (4.32) на ось , проходящей через центр О, то получим равенство, характеризующее теорему об изменении кинетического момента относительно оси.

(4.33)

Подставляя (4.10) в равенство (4.33) можно записать дифференциальное уравнение вращающегося твердого тела (колес, осей, валов, роторов и т.д.) в трех формах.

(4.34)

(4.35)

(4.36)

Таким образом, теорему об изменении кинетического момента целесообразно использовать для исследования весьма распространенного в технике движения твердого тела, его вращения вокруг неподвижной оси.

Закон сохранения кинетического момента системы

1. Пусть в выражении (4.32) .

Тогда из уравнения (4.32) следует, что , т.е. если сумма моментов всех приложенных к системе вешних сил относительно данного центра равно нулю, то кинетический момент системы относительно этого центра будет численно и по направлению будет постоянен.

2. Если , то . Таким образом, если сумма моментов действующих на систему внешних сил относительно некоторой оси равна нулю, то кинетический момент системы относительно этой оси будет величиной постоянной.

Эти результаты выражают собой закон сохранения кинетического момента.

В случае вращающегося твердого тела из равенства (4.34) следует, что, если , то . Отсюда приходим к следующим выводам:

Если система неизменяема (абсолютно твердое тело), то , следовательно, и и твердое тело вращается вокруг неподвижной оси с постоянной угловой скоростью.

Если система изменяема, то . При увеличении (тогда отдельные элементы системы удаляются от оси вращения) угловая скорость уменьшается, т.к. , а при уменьшении увеличивается, таким образом, в случае изменяемой системы с помощью внутренних сил можно изменить угловую скорость.

Вторая задача Д2 контрольной работы посвящена теореме об изменении кинетического момента системы относительно оси.

Задача Д2

Однородная горизонтальная платформа (круглая радиуса R или прямоугольная со сторонами R и 2R, где R = 1,2м) массой кг вращается с угловой скоростью вокруг вертикальной оси z, отстоящей от центра масс C платформы на расстоянии OC = b (рис. Д2,0 – Д2,9, табл. Д2); размеры для всех прямоугольных платформ показаны на рис. Д2,0а (вид сверху).

В момент времени по желобу платформы начинает двигаться (под действием внутренних сил) груз D массой кг по закону , где s выражено в метрах, t - в секундах. Одновременно на платформы начинает действовать пара сил с моментом M (задан в ньютонометрах; при M < 0 его направление противоположно показанному на рисунках).

Определить, пренебрегая массой вала, зависимость т.е. угловую скорость платформы, как функцию времени.

На всех рисунках груз D показан в положении, при котором s > 0 (когда s < 0, груз находится по другую сторону от точки А). Изображая чертеж решаемой задачи, провести ось z на заданном расстоянии OC = b от центра C.

Указания. Задача Д2 – на применение теоремы об изменении кинетического момента системы. При применении теоремы к системе, состоящей из платформы и груза, кинетический момент системы относительно оси z определяется как сумма моментов платформы и груза. При этом следует учесть, что абсолютная скорость груза складывается из относительной и переносной скоростей, т.е. . Поэтому и количество движения этого груза . Тогда можно воспользоваться теоремой Вариньона (статика), согласно которой ; эти моменты вычисляются так же, как моменты сил. Подробнее ход решения разъяснен в примере Д2.

При решении задачи полезно изобразить на вспомогательном чертеже вид на платформу сверху (с конца z), как это сделано на рис. Д2,0,а – Д2,9, а.

Момент инерции пластины с массой m относительно оси Cz, перпендикулярной пластине и проходящей через ее центр масс, равен: для прямоугольной пластины со сторонами и

;

Для круглой пластины радиуса R


Номер условия b s = F(t) M
R R/2 R R/2 R R/2 R R/2 R R/2 -0.4 0.6 0.8 10 t 0.4 -0.5t -0.6t 0.8t 0.4 0.5 4t -6 -8t -9 6 -10 12

Рис. Д2.0
Рис. Д2.0а

Рис. Д2.1
Рис. Д2.1а

Рис. Д2.2
Рис. Д2.2а

Рис. Д2.3
Рис. Д2.3а

Рис. Д2.4
Рис. Д2.4а

Рис. Д2.5а
Рис. Д2.5

Рис. Д2.6
Рис. Д2.6а

Рис. Д2.7
Рис. Д2.7а

Рис. Д2.8
Рис. Д2.8а

Рис. Д2.9
Рис. Д2.9а

Рис. Д2

Пример Д2 . Однородная горизонтальная платформа (прямоуголь­ная со сторонами 2l и l), имеющая массу жестко скреплена с вертикальным валом и вращается вместе с ним вокруг оси z с угло­вой скоростью (рис. Д2а). В момент времени на вал начинает действовать вращающий момент М, направленный противо­положно ; одновременно груз D массой , находящийся в желобе АВ в точке С, начинает двигаться по желобу (под действием внутрен­них сил) по закону s = CD = F(t).

Дано: m 1 = 16 кг, т 2 = 10 кг, l = 0,5 м, = 2 , s = 0,4t 2 (s - в метрах, t - в секундах), М = kt, где k =6 Нм/с. Опре­делить: - закон изменения угловой скорости платформы.

Решение. Рассмотрим механическую систему, состоящую из плат­формы и груза D. Для определения w применим теорему об изменении кинетического момента системы относительно оси z:

(1)

Изобразим действующие на систему внешние силы: силы тяжести реакции и вращающий момент M. Так как силы и параллельны оси z, а реакции и эту ось пересекают, то их моменты относительно оси z равны нулю. Тогда, считая для момента положительным направление (т. е. против хода часовой стрелки), получим и уравнение (1) примет такой вид.

Рассмотрим материальную точку M массой m , движущуюся под действием силы F (рисунок 3.1). Запишем и построим вектор момента количества движения (кинетического момента) M 0 материальной точки относительно центра O :

Рисунок 3.1

Дифференцируем выражение момента количества движения (кинетического момента k 0 ) по времени:

Так как dr/dt=V , то векторное произведение V × m∙V (коллинеарных векторов V и m∙V ) равно нулю. В то же время d(m∙V)/dt=F согласно теореме о количестве движения материальной точки . Поэтому получаем, что

dk 0 /dt = r×F , (3.3)

где r×F = M 0 (F) – вектор-момент силы F относительно неподвижного центра O . Вектор k 0 ⊥ плоскости (r, m×V ), а вектор M 0 (F) ⊥ плоскости (r, F ), окончательно имеем

dk 0 /dt = M 0 (F) . (3.4)

Уравнение (3.4) выражает теорему об изменении момента количества движения (кинетического момента) материальной точки относительно центра: производная по времени от момента количества движения (кинетического момента) материальной точки относительно какого-либо неподвижного центра равна моменту действующей на точку силы относительно того же центра.

Проецируя равенство (3.4) на оси декартовых координат, получаем

dk x /dt = M x (F) ;

dk y /dt = M y (F) ;

dk z /dt = M z (F) . (3.5)

Равенства (3.5) выражают теорему об изменении момента количества движения (кинетического момента) материальной точки относительно оси: производная по времени от момента количества движения (кинетического момента) материальной точки относительно какой-либо неподвижной оси равна моменту действующей на эту точку силы относительно той же оси.

Рассмотрим следствия, вытекающие из теорем (3.4) и (3.5).

Следствие 1

Рассмотрим случай, когда сила F во все время движения точки проходит через неподвижный центр O (случай центральной силы), т.е. когда M 0 (F) = 0 . Тогда из теоремы (3.4) следует, что k 0 = const , т.е. в случае центральной силы момент количества движения (кинетический момент) материальной точки относительно центра этой силы остается постоянным по модулю и направлению (рисунок 3.2).

Рисунок 3.2

Из условия k 0 = const следует, что траектория движущейся точки представляет собой плоскую кривую, плоскость которой проходит через центр этой силы.

Следствие 2

Пусть M z (F) = 0 , т.е. сила пересекает ось z или параллельна ей.

В этом случае, как это видно из третьего из уравнений (3.5), k z = const , т.е. если момент действующей на точку силы относительно какой-либо неподвижной оси всегда равен нулю, то момент количества движения (кинетический момент) точки относительно этой оси остается постоянным .

В некоторых задачах в качестве динамической характеристики движущейся точки вместо самого количества движения рассматривают его момент относительно какого-либо центра или оси. Эти моменты определяются также как и моменты силы.

Моментом количеством движения материальной точки относительно некоторого центра О называется вектор, определяемый равенством

Момент количества движения точки называют также кинетическим моментом .

Момент количества движения относительно какой-либо оси , проходящий через центр О, равен проекции вектора количества движения на эту ось .

Если количество движения задано своими проекциями на оси координат и даны координаты точки в пространстве, то момент количества движения относительно начала координат вычисляется следующим образом:

Проекции момента количества движения на оси координат равны:

Единицей измерения количества движения в СИ является – .

Теорема об изменении момента количества движения точки.

Теорема. Производная по времени от момента количества движения точки, взятого относительно какого-нибудь центра, равна моменту действующей на точку силы относительно того же центра.

Доказательство: Продифференцируем момент количества движения по времени

, , следовательно , (*)

что и требовалось доказать.

Теорема. Производная по времени от момента количества движения точки, взятого относительно какой-либо оси, равна моменту действующей на точку силы относительно той же оси.

Для доказательства достаточно спроектировать векторное уравнение (*) на эту ось. Для оси это будет выглядеть так:

Следствия из теорем:

1. Если момент силы относительно точки равен нулю, то момент количества движения относительно этой точки величина постоянная.

2. Если момент силы относительно оси равен нулю, то момент количества движения относительно этой оси величина постоянная.

Работа силы. Мощность.

Одна из основных характеристик силы, оценивающих действие силы на тело при некотором его перемещении.

Элементарная работа силы скалярная величина равная произведению элементарного перемещения на проекцию силы на это перемещение.

Единицей измерения работы в СИ является –

При при

Частные случаи:

Элементарное перемещение равно дифференциалу радиуса вектора точки приложения силы.

Элементарная работа силы равна скалярному произведению силы на элементарное перемещение или на дифференциал радиуса вектора точки приложения силы.

Элементарная работа силы равна скалярному произведению элементарного импульса силы на скорость точки.

Если сила задана своими проекциями () на оси координат и элементарное перемещение задано своими проекциями () на оси координат, то элементарная работа силы равна:

(аналитическое выражение элементарной работы).

Работа силы на любом конечном перемещении равна взятому вдоль этого перемещения интегралу от элементарной работы.

Мощностью силы называется величина, определяющая работу, совершаемую силой в единицу времени. В общем случае мощность равна первой производной по времени от работы.

,

Мощность равна скалярному произведению силы на скорость.

Единицей измерения мощности в СИ является –

В технике за единицу силы принимается .

Пример 1. Работа силы тяжести.

Пусть точка М, на которую действует сила тяжести Р, перемещается из положения в положение . Выберем оси координат так, чтобы ось была направлена вертикально вверх.

Тогда, , , и

Работа силы тяжести равна взятому со знаком плюс или минус произведению модуля силы на вертикальное перемещение точки ее приложения. Работа положительна, если начальная точка выше конечной, и отрицательна, если начальная точка ниже конечной.

Пример 2. Работа силы упругости.

Рассмотрим материальную точку закрепленную на упругом элементе жесткости с, которая совершает колебания вдоль оси х. Сила упругости (или восстанавливающая сила) . Пусть точка М, на которую действует только сила упругости, перемещается из положения в положение . ( , ).

Мощность пары сил равна


Кинетическая энергия точки

Кинетической энергией материальной точки (или ее живой силой) называют половину произведения массы точки на квадрат ее скорости.